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Abstract: Likert-type data are often assumed to be equidistant by applied researchers so that they can use parametric 
methods to analyse the data. Since the equidistance assumption rarely is tested, the validity of parametric analyses of 
Likert-type data is often unclear. This paper consists of two parts where we deal with this validity problem in two different 
respects. In the first part, we use an experimental design to show that the perceived distance between scale points on a 
regular five-point Likert-type scale depends on how the verbal anchors are used. Anchors only at the end points create a 
relatively larger perceived distance between points near the ends of the scale than in the middle (end-of-scale effect), 
while anchors at all points create a larger perceived distance between points in the middle of the scale (middle-of-scale 
effect). Hence, Likert-type scales are generally not perceived as equidistant by subjects. In the second part of the paper, we 
use Monte Carlo simulations to explore how parametric methods commonly used to compare means between several 
groups perform in terms of actual significance and power when data are assumed to be equidistant even though they are 
not. The results show that the preferred statistical method to analyse Likert-type data depends on the nature of their non-
equidistance as well as their skewness. Under middle-of-scale effect, the omnibus one-way ANOVA works best when data 
are relatively symmetric. However, the Kruskal-Wallis test works better when data are skewed except when sample sizes 
are unequal, in which case the Brown-Forsythe test is better. Under end-of-scale effect, on the other hand, the Kruskal-
Wallis test should be preferred in most cases when data are at most moderately skewed. When data are heavily skewed, 
ANOVA works best unless when sample sizes are unequal, in which case the Brown-Forsythe test should be preferred. 
 
Keywords: Likert-type scale; equidistance; Monte Carlo simulation; ANOVA; Kruskal-Wallis test; Brown-Forsythe test; 
Welch test 

1. Introduction 

Since the psychologist Rensis Likert (Likert, 1932) published his seminal work on measurement of attitudes, 
Likert items (often referred to as ‘Likert-type scales’) and true Likert scales have been important data 
collection methodologies in research on attitudes and opinions in the social sciences in general. In business 
and management, Likert-type scales are often used by researchers to collect data (Alexandrov, 2010). Even 
though the optimal number of steps has been debated over the years (Pearse, 2011), the classical Likert item 
based on a statement where the subjects are asked to choose one out of five possible degrees of agreement, 
ranging from ‘strongly agree’ to ‘strongly disagree’, that complies with their view on the matter, still seem to 
the most common choice among researchers. According to the traditional classification of measurement scales 
(Stevens, 1946), Likert-type scales must be either ordinal or interval, depending on whether or not the scale is 
equidistant, since rank-ordering is possible while a true zero point is missing. Whether Likert-type scales 
should generally be regarded as ordinal or interval has been extensively debated among researchers over the 
years (e.g. Carifio and Perla, 2007; Jamieson, 2004; Michell, 1986), since the choice of statistical methodology 
depends on the result of this debate. According to the standard textbook view, data having only ordinal 
properties should be analysed with non-parametric statistics based on ranks. However, parametric statistics 
that are more powerful are allowed for data with interval properties, utilising the actual values of the data 
instead of just their ranks. 
 
To be able to use parametric statistics on ordinal data, several different methods for ‘rescaling’ ordinal scales 
to get interval properties have been proposed (e.g. Granberg-Rademacker, 2010; Wu, 2007; King et al., 2004; 
Harwell and Gatti, 2001; Bendixen and Sandler, 1995). The use of such methods in applied research seems rare 
in practical analysis of Likert-type data, perhaps because it appears improbable that an ordinal scale with 
unknown distance between the scale points could actually be rescaled to a true interval scale, or due to a 
concern that the informational content of the data will be affected by the procedure. Instead, the vast 
majority of researchers about to analyse Likert-type data seem to either obey the purist view on statistics and 
open the non-parametric toolbox or trust the methodology researchers who claim that t and F are statistics 
robust to minor violations in the underlying assumptions. To be allowed to use parametric methods, many 
researchers simply assume that their scale has interval properties (Albaum, 1997) while a few put a lot of 
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effort into showing that their scale demonstrates acceptable quality as an interval measurement device (e.g. 
Albaum et al, 1977). The main problem, however, is that presence of interval properties is a necessary but not 
a sufficient condition for statistical analyses with parametric methodologies. Assumptions regarding normality 
and homoscedasticity must also be addressed. 
 
There has been a considerable amount of research during the years testing the robustness of parametric 
methods like the t-test and the analysis of variance (ANOVA), often based on Monte Carlo approaches, against 
violations of the normality and the homoscedasticity assumptions. For example, Glass et al. (1972) found that 
skewness only had a small effect on the efficiency of ANOVA. Feir and Toothaker (1974) compared ANOVA 
with the Kruskal-Wallis test in a Monte Carlo study and concluded, based on ‘the instability of power for the 
Kruskal-Wallis test’, that ANOVA was the recommended procedure even when normality and/or 
homoscedasticity is doubtful. Zimmerman (1998) evaluated the Wilcoxon test against the t-test in a simulation 
study under concurrent violation of two assumptions, namely normality and homoscedasticity. He showed 
that nonparametric methods do not generally provide protection against concurrent violation of normality and 
homoscedasticity. Under some conditions, the Wilcoxon test would even make the situation worse. Lantz 
(2012) showed that parametric methods are generally more sensitive to different degrees of sample non-
normality when populations are distinctly non-normal. He concluded that the Kruskal-Wallis test should be 
preferred as soon as the underlying populations are not known to be normal or approximately normal in order 
to avoid a preliminary test for normality that makes the overall level of significance unclear. However, despite 
extensive search, we have been unable to find any study that assesses the violation of the equidistance 
assumption while using parametric methods from a robustness perspective.  
 
When researchers are in the process of choosing a statistical methodology to analyse Likert-type data, they 
should consider the way subjects perceive the response scale. If the scale is perceived as equidistant, 
parametric methods can obviously be used to analyse the data. If not, the purist view on statistics requires a 
non-parametric methodology. Research based on rescaling of ordinal data indicate that subjects actually do 
perceive Likert-type scales as non-equidistant, at least for specific constructs (e.g. Lee and Soutar, 2010; 
Mundy and Dickinson, 2004; Kennedy, Riquier, and Sharp, 1996; Bendixen and Sandler, 1995). Hence, the 
purpose of this study is to explore whether subjects generally perceive the five-point Likert-type scale as non-
equidistant, and to examine how non-equidistance can affect the choice of statistical method for analysing 
Likert-type data. 
 
The remainder of the paper is organised as follows. In the next section, two experiments are conducted in 
order to explore subject perceptions of the five-point Likert-type scale. Thereafter, a simulation study 
compares the performance of one-way ANOVA with alternative methods under different types of non-
equidistance, followed by the conclusion. 

2. Experiments 

There are several obvious problems related to the process of assigning values to the points (or the distances 
between points) on a scale that is qualitative rather than quantitative by nature. Both the subjective distances 
between the scale points and the subjective zero points may differ between occasions and/or between 
respondents. They may even shift within the occasion due to respondent stimulus. In addition, the subjective 
distances between scale points may differ between subsets of the scale. Because of these problems, it is 
meaningless to assume that the distance between different points on the scale is measurable in absolute 
terms in order to be able to make a claim about the absolute distance between the points on the scale. In 
general, if the premise (e.g. it is actually possible to measure the absolute distance between points on a scale) 
cannot be proven valid, the result (e.g. measured absolute distances between points on the scale) may be 
invalid. For this reason, we did not assume that the absolute distances between the scale point is possible to 
measure. Instead, we only assumed that respondents can compare pair-wise changes in opinion represented 
by different movements between points on a five-point response scale within a Likert item, and express 
whether they perceive one change in opinion as greater than the other, or if they view them as equal. 
 
The response scale formats under study here were technically five-point discrete visual analogue scales. Verbal 
anchors were used at the ends as illustrated in figure 1a in the first experiment, and at all points as illustrated 
in figure 1b in the second experiment, in order to examine whether respondents perceive the scale differently 
when they have to attach their personal interpretation of the different scale points based on only the numbers 
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identifying them. Providing consecutive integers for the scale points was also assumed to maximize the 
likelihood that respondents actually would perceive the scale as interval, which meant that we would have a 
stronger case if the interval hypothesis were rejected. 
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Figure 1a: Verbal anchors only at the end points 
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Figure 1b: Verbal anchors at all points 

Two convenience samples of 178 and 101 respondents were recruited for participation in the experiments. No 
individual demographic or other background data were collected; however, all respondents were regular first- 
or second-year business students with an approximately even distribution between males and females. A 
majority of respondents were in their twenties. Hence, as always in experiments where students are used as 
subjects, the validity of the results rests on the assumption that students are representative of ‘real people’ 
(e.g., Cunningham et al., 1974). All respondents answered the questionnaire anonymously. The instructions 
specified that there was no ‘correct’ answer to any of the problems and that the aim of the study was to 
explore how people perceive this kind of response scale. All respondents were presented with a questionnaire 
where the scale was displayed and followed by nine different problems of the type illustrated in figure 2. 

 Compare a movement from 1 to 2 on the scale with a movement from 3 to 4 on the 

scale. Which one of them do you think represents a greater change in the level of 

agreement? Tick the appropriate box. 

 

 1 to 2 is greater 

 3 to 4 is greater 

 No difference 

 
 

Figure 2: Example of a problem 

To ensure reliability, several versions of the questionnaire were used so that different respondents were 
exposed to the problems and the options in different orders using a randomized process. The direction of the 
response scale was also varied randomly. No significant differences were found between the groups of 
respondents using different versions of the questionnaire. 
 
The data from the problems in both experiments were analysed with respect to two different null hypotheses: 

H1: A majority of the subjects do not perceive a difference.  

H2: Uniform distribution characterises the two types of perceived differences. 

The results from experiment 1, where only the end points on the scale had verbal anchors, are presented in 
table 1. Note that, for clarity, the nine comparisons are presented in four groups with different characteristics. 
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Group I consists of the three symmetric problems. In group II, there are two asymmetric problems with one-
point movements on each side of the scale. Group III consists of the two asymmetric problems with two-point 
movements on each side of the scale. Finally, in group IV, we have the two possible one-point movements on 
the same side of the scale.  

Table 1: Results from experiment 1 with verbal anchors only at the end points 

Group Movement comparison Frequency (percentage) H1 H2 

 A B A is greater B is greater No difference p-value* p-value* Effect size h 

I 1 to 2 4 to 5 43 (24.2%) 40 (22.5%) 95 (53.4%) 0.815 0.742  

 1 to 3 3 to 5 36 (20.2%) 40 (22.5%) 102 (57.3%) 0.973 0.647  

 2 to 3 3 to 4 29 (16.3%) 26 (14.6%) 113 (63.5%) 0.999 0.686  

II 1 to 2 3 to 4 79 (44.4%) 49 (27.5%) 50 (28.1%) <0.001 0.010 0.47 

 2 to 3 4 to 5 52 (29.2%) 78 (43.8%) 48 (27.0%) <0.001 0.025 0.40 

III 1 to 3 2 to 4 85 (47.8%) 52 (29.2%) 41 (23.0%) <0.001 0.006 0.49 

 2 to 4 3 to 5 50 (28.1%) 79 (44.4%) 49 (27.5%) <0.001 0.013 0.45 

IV 1 to 2 2 to 3 84 (47.2%) 43 (24.2%) 51 (28.7%) <0.001 0.001 0.66 

 3 to 4 4 to 5 51 (28.7%) 78 (43.8%) 49 (27.5%) <0.001 0.020 0.42 

* Based on regular two-sample z-tests 

For all three problems in group I, the symmetric comparisons, the results indicate that a majority of subjects 
do not perceive a difference. Hence, they experience the scale as symmetrical, which we refer to as the 
symmetry effect. For group II with the asymmetric one-step comparisons, a majority of the subjects do 
perceive differences. Specifically, significantly more subjects perceive 1–2 as larger than 3–4. We see the same 
effect on the other side of the scale where significantly more subjects perceive 4–5 as larger than 2–3. Besides 
the symmetry effect, these results also indicate that respondents tend to think that the distance between scale 
points is greater near an end of the scale than near the middle. We will refer to this as the end-of-scale effect. 
For the asymmetric two-step comparisons in group III, the same pattern emerges as in group II. A majority of 
the subjects perceive differences, and significantly more subjects perceive 1–3 as larger than 2–4, while 
significantly more subjects perceive 3–5 as larger than 2–4. Thus, both the end-of-scale effect and the 
symmetry effect can be seen in these data. Finally, in group IV, a majority of the subjects perceive differences 
while both the end-of-scale effect and the symmetry effect are visible. On the lower part of the scale, 
significantly more subjects perceive 1–2 as larger than 2–3. Mirroring this, significantly more subjects perceive 
4–5 as larger than 3–4. Again, the distance between points near the end of the scale is experienced as greater 
changes in opinion than between points in the middle of the scale. In addition, this effect exists in a 
symmetrical manner on both sides of the scale. 
 
Table 2 presents the results from experiment 2, where all points on the scale had verbal anchors. Again, the 
nine comparisons are divided into four groups with different characteristics. 

Table 2: Results from experiment 2 with verbal anchors at all points 

Group Movement comparison Frequency (percentage) H1 H2 

 A B A is greater B is greater No difference p-value* p-value* Effect size h 

I 1 to 2 4 to 5 19 (18,8 %) 27 (26,7 %) 55 (54,5 %) 0.814   

 1 to 3 3 to 5 16 (15,8 %) 30 (29,7 %) 55 (54,5 %) 0.814   

 2 to 3 3 to 4 19 (18,8 %) 18 (17,8 %) 64 (63,4 %) 0.995   

II 1 to 2 3 to 4 24 (23,8 %) 62 (61,4 %) 15 (14,9 %) <0.001 <0.001 0.92 

 2 to 3 4 to 5 68 (67,3 %) 24 (23,8 %) 9 (8,9 %) <0.001 <0.001 1.00 

III 1 to 3 2 to 4 23 (22,8 %) 65 (64,4 %) 13 (12,9 %) <0.001 <0.001 1.00 

 2 to 4 3 to 5 51 (50,5 %) 32 (31,7 %) 18 (17,8 %) <0.001 0.042 0.46 

IV 1 to 2 2 to 3 25 (24,8 %) 61 (60,4 %) 15 (14,9 %) <0.001 <0.001 0.86 

 3 to 4 4 to 5 55 (54,5 %) 28 (27,7 %) 18 (17,8 %) <0.001 0.005 0.66 

* Based on regular two-sample z-tests 

As in experiment 1, there were significant differences between the two types of movements in all cases where 
a significant minority perceived no difference. For all three problems in group I, the symmetric comparisons, 
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the results in experiment 2 were similar to the results in experiment 1. Hence, the perceived symmetry of the 
scale does not seem to be affected by the way the verbal anchors were used. In group II, a majority of subjects 
perceived differences. However, the differences are not of the same nature as in experiment 1. Significantly 
more subjects now perceive 3–4 as larger than 1–2, and 2–3 as larger than 4–5, in contrast to the previous 
situation when only the end points had verbal anchors. Similar changes can be seen in groups III and IV, where 
the movements between points near the middle of the scale are perceived as larger than movements near the 
end of the scale by significantly more subjects. Hence, the results in experiment 2 differ significantly from the 
results in experiment 1 since movements between points in the middle of the scale are experienced as greater 
changes in opinion than movements between points near an end of the scale in experiment 2. We will refer to 
this as the middle-of-scale effect. It should also be noted that the effect sizes were generally larger when all 
points on the scale had verbal anchors. 
 
The main observation from these experiments is that there are systematic differences in the way respondents 
perceive the five-point Likert-type scale, depending on how verbal anchors are used. A possible explanation for 
why subjects perceive a scale with verbal anchors at the end points differently from a scale with verbal 
anchors at all points is that with the latter, it becomes more obvious that while a movement in the middle of 
the scale signals a change of opinion, a movement at the end of the scale only signals a change of intensity 
within the same opinion. With verbal anchors only at the ends, the subjects have to imagine the meaning of 
the other scale points themselves. Hence, without verbal anchors, it is not obvious that a movement between, 
for example, 2 and 4 is equivalent to a change in opinion. 
 
There has been some previous research dealing with the effects of verbal anchors that these results can be 
related to (see Weijters et al., 2010, for a review). For example, verbal anchors are often assumed to make 
scale points more salient, which might attract respondents (Krosnick and Fabrigar, 1997). Hence, verbal 
anchors on intermediate points would create a shift towards those points at the expense of the extreme points 
(Simonson, 1989). The end-of-scale effect may also be seen as an explanation of the well-known central 
tendency bias (e.g. James, Demaree, and Wolf, 1984) in surveys. The relatively large perceived distance 
between points at the end of the scale makes it relatively hard to reach an end point when verbal anchors are 
used only at the end points. The perceived distance between points in the middle of the scale is smaller, which 
makes it easier to move between them. 
 
The variance for a set of data of this type also depends on the way the verbal anchors are used, which should 
be taken into account in the statistical analysis. A rank-based test procedure (e.g. the Kruskal-Wallis test) is 
obviously immune to potential scale effects of the type we have discussed here; however, a parametric test 
procedure (e.g. the one-way ANOVA) is not. It is easy to see that assigning, for example, the values {0, 1.5, 2, 
2.5, 4}, representing end-of-scale effect, to the five scale points will create a lower variance than, for example, 
the values {0, 0.5, 2, 3.5, 4}, representing middle-of-scale effect. Parametric test procedures are obviously 
affected by this problem. 
 
Since neither of the two types of verbal anchor use creates a response scale that is perceived as equidistant, 
there are potential validity issues related to the choice of statistical methodology used in the analyses of data 
collected with Likert-type scales. In the next section, we will use a Monte Carlo approach to evaluate these 
issues. 

3. Simulations 

Design 
 
An experimental design with three populations (k = 3) and four different combinations of small (defined as n = 
5) and large (defined as n = 25) sample sizes were used. The simulations were based on random numbers from 

binomial distributions with a sample space {0, 1, 2, 3, 4} to represent five-level Likert-items, where μ1  μ2  μ3 
and |μ1 – μ2| = |μ3 – μ2|. Symmetry was defined as a situation where the second population had a true mean 
value of 2. Moderate skewness was assumed to correspond with a true mean value of 1 for the second 
population, and severe skewness with a true mean value of 0.5. The three cases are illustrated in figure 3, with 
a symmetric distribution to the left, a moderately skewed distribution in the middle, and a severely skewed 
distribution to the right. 
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Figure 3: Symmetry, moderate skewness, and severe skewness 

Table 3 shows the manner in which the true mean values of the distributions were shifted to achieve a suitable 
range of effect sizes (Cohen, 1992), ranging from no effect (f = 0) to a very large effect (f = 0.65). All mean 
values were calculated using G*Power version 3.1.2 (Faul et al., 2007). Note that the first population in the 
heavily skewed case with a very large effect size is technically not based on the binomial distribution as it 
consists exclusively of zeros. 

Table 3: True mean values and implied effect sizes 

Symmetrical Moderately skewed Heavily skewed 
Effect size 

μ1 μ2 μ3 μ1 μ2 μ3 μ1 μ2 μ3 

2.000 2.000 2.000 1.000 1.000 1.000 0.500 0.500 0.500 f = 0.00 

1.877 2.000 2.123 0.894 1.000 1.106 0.419 0.500 0.581 f = 0.10 

1.696 2.000 2.304 0.737 1.000 1.263 0.299 0.500 0.701 f = 0.25 

1.519 2.000 2.481 0.583 1.000 1.417 0.182 0.500 0.818 f = 0.40 

1.243 2.000 2.757 0.344 1.000 1.656 0.000 0.500 1.000 f = 0.65 

Four different test procedures were examined; the omnibus one-way ANOVA, the Kruskal-Wallis test (Kruskal 
and Wallis, 1952), the Brown-Forsythe test (Brown and Forsythe, 1974), and the Welch test (Welch, 1951). 
Every combination of test procedure and parent distribution was evaluated for every combination of sample 
sizes and effect size. For each combination, 3 × 50,000 sets of random numbers were generated, and the null 
hypothesis that corresponds to no difference between the locations of the populations was challenged at an 
alpha level of 0.05. The end-of-scale effect was simulated by adjusting the original scale to {0, 1.5, 2, 2.5, 4} 
and the middle-of-scale effect by adjusting it to {0, 0.5, 2, 3.5, 4}. All simulation procedures were conducted 
using Microsoft Excel 2010. 
 
The null hypothesis of no difference in the true proportion of rejected tests between the four procedures for a 
certain combination was evaluated with chi-square tests in all cases. In cases where this null hypothesis was 
rejected, post hoc analysis was performed using pair-wise chi-square tests with Bonferroni correction. 
 
Results 
 
Table 4 shows the simulation results in the symmetric case with equidistant data. At (25, 25, 25), there is a 
significant difference between the methods only when the effect size is medium, where ANOVA (A) and the 
Brown-Forsythe test (BF) both are significantly more powerful than the Kruskal-Wallis test (KW). At (5, 5, 5), 
the methods differ significantly at all effect sizes. The overall picture from the detailed analyses is that A works 
best and that the Welch test (W) should be avoided in these circumstances. We also note that all methods 
except A are quite conservative and generate very few type I errors when all sample sizes are small. At (5, 5, 
25), A is superior as well; however, it should be noted that KW dominates both BF and W at medium and larger 
effect sizes. At (5, 25, 25), KW has the lowest power when the effect size is small; however, when the effect 
size becomes larger, W performs worse while A and KW are more powerful. Hence, in the symmetric case with 
equidistant data, A should be recommended as it dominates the other three methods for many combinations 
of effect sizes and sample sizes, especially where at least one sample size is small, and is never dominated by 
any of them. This is obviously in line with what one could have expected according to theory, as data are 
metric and approximate homoscedasticity prevails in the symmetric case. 
 
Table 5 shows the results from the symmetric case where the end-of-scale (EOS) effect is present. At (25, 25, 
25), KW dominates W when the effect size is small. Furthermore, KW dominates all the other methods at 
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medium and large effect sizes. The tendency is similar, but reinforced, when at least one sample size is small: 
KW dominates the other methods, and BF and W are weak. Moreover, when at least one sample size is small, 
BF and W are quite conservative, which is the probable reason for their low power. Hence, in the symmetric 
case when the EOS effect is present, KW should be the recommended method as it dominates the other three 
methods for most combinations of effect size and sample sizes. Note that the percentages for KW are the 
same as in the equidistant case above (and as in the middle-of-scale case below) as KW is not affected by non-
equidistance since the ranks stay the same regardless of the severity of the equidistance assumption violation. 
Thus, the differences in percentages for the other methods illustrate the impact of the EOS effect when data 
are incorrectly assumed to be equidistant. 

Table 4: Proportion of significant tests, symmetric data and equidistance 

Sample 
sizes 

Effect 
size 

Test procedure 
p-value 

ANOVA 
Kruskal-
Wallis 

Brown-
Forsythe 

Welch 

n1 = 25 0.00 0.0503 0.0484 0.0499 0.0504 0.492 

n2 = 25 0.10 0.1105 0.1055 0.1099 0.1088 0.071 

n3 = 25 0.25 0.4605 0.4462 0.4598 0.4541 0.002 

 0.40 0.8655 0.8564 0.8653 0.8602 0.343 

 0.65 0.9992 0.9991 0.9992 0.9991 0.999 

n1 = 5 0.00 0.0488 0.0398 0.0428 0.0369 < 0.001 

n2 = 5 0.10 0.0584 0.0486 0.0514 0.0453 < 0.001 

n3 = 5 0.25 0.1088 0.0926 0.0964 0.0857 < 0.001 

 0.40 0.2135 0.1838 0.1954 0.1725 < 0.001 

 0.65 0.4878 0.4378 0.4584 0.4112 < 0.001 

n1 = 5 0.00 0.0516 0.0447 0.0492 0.0478 < 0.001 

n2 = 5 0.10 0.0701 0.0619 0.0650 0.0636 < 0.001 

n3 = 25 0.25 0.1927 0.1710 0.1518 0.1474 < 0.001 

 0.40 0.4335 0.3890 0.3290 0.3162 < 0.001 

 0.65 0.8455 0.8000 0.7009 0.6610 < 0.001 

n1 = 5 0.00 0.0513 0.0474 0.0557 0.0542 < 0.001 

n2 = 25 0.10 0.0751 0.0699 0.0789 0.0753 < 0.001 

n3 = 25 0.25 0.2297 0.2132 0.2154 0.1967 < 0.001 

 0.40 0.5160 0.4915 0.4695 0.4398 < 0.001 

 0.65 0.9100 0.8958 0.8574 0.8401 < 0.001 

Table 5: Proportion of significant tests, symmetric data and end-of-scale effect 

Sample 
sizes 

Effect 
size 

Test procedure 

p-value 
ANOVA 

Kruskal-
Wallis 

Brown-
Forsythe 

Welch 

n1 = 25 0.00 0.0499 0.0484 0.0493 0.0458 0.018 

n2 = 25 0.10 0.1015 0.1055 0.1003 0.0970 < 0.001 

n3 = 25 0.25 0.4163 0.4462 0.4140 0.4065 < 0.001 

 0.40 0.8242 0.8564 0.8225 0.8167 < 0.001 

 0.65 0.9973 0.9991 0.9973 0.9970 0.987 

n1 = 5 0.00 0.0336 0.0398 0.0206 0.0144 < 0.001 

n2 = 5 0.10 0.0418 0.0486 0.0257 0.0179 < 0.001 

n3 = 5 0.25 0.0789 0.0926 0.0516 0.0315 < 0.001 

 0.40 0.1627 0.1838 0.1175 0.0656 < 0.001 

 0.65 0.4085 0.4378 0.3343 0.1981 < 0.001 

n1 = 5 0.00 0.0546 0.0447 0.0262 0.0236 < 0.001 

n2 = 5 0.10 0.0704 0.0619 0.0395 0.0358 < 0.001 

n3 = 25 0.25 0.1627 0.1710 0.1212 0.0982 < 0.001 

 0.40 0.3590 0.3890 0.2989 0.2496 < 0.001 

 0.65 0.7620 0.8000 0.6637 0.6275 < 0.001 

n1 = 5 0.00 0.0543 0.0474 0.0420 0.0358 < 0.001 

n2 = 25 0.10 0.0726 0.0699 0.0580 0.0518 < 0.001 

n3 = 25 0.25 0.2065 0.2132 0.1709 0.1490 < 0.001 

 0.40 0.4631 0.4915 0.4049 0.3640 < 0.001 

 0.65 0.8656 0.8958 0.8207 0.7925 < 0.001 
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Table 6 shows the results from the symmetric case where the middle-of-scale (MOS) effect is present. At (25, 
25, 25), there are no significant differences in performance between the methods; however, at (5, 5, 5) A 
dominates all the other methods at all effect sizes while KW generally performs worse than both BF and W. At 
(5, 5, 25), A continues to dominate the other methods at all effect sizes, while KW is now significantly more 
powerful than both BF and W at medium and larger effect sizes. At (5, 25, 25), BF and W are quite liberal and 
generate many type I errors, which also explains the superiority of BF and W at the small effect size. At larger 
effect sizes, BF and W, again, have less power than both A and KW, which in turn do not differ significantly. 
Hence, the MOS effect seems to affect BF and W more than it affects A. Therefore, in the symmetric case 
when the MOS effect is present, A should be recommended as it dominates the other three methods for most 
combinations of effect sizes and sample sizes. 
 
Table 7 shows the results from the case where data are moderately skewed but equidistant. At (25, 25, 25), 
the only significant difference is that KW has less power at the medium effect size. At (5, 5, 5), all methods 
except A are excessively conservative, and A is more powerful while W is less powerful than KW and BF at all 
effect sizes. At (5, 5, 25) and (5, 25, 25), BF and W are more powerful than A and KW in most cases except for 
the very large effect size where W loses power, while KW is in turn generally more powerful than A. Hence, 
where data are moderately skewed but equidistant, A should be the recommended method under equal 
sample sizes as it is at least as powerful as any of the other methods in all situations. On the other hand, under 
unequal sample sizes, A should be avoided as it is the weakest of the methods in most cases. Here, BF must be 
recommended as it is the method with the highest power in most cases. 

Table 6: Proportion of significant tests, symmetric data and middle-of-scale effect 

Sample 
sizes 

Effect 
size 

Test procedure 
p-value 

ANOVA 
Kruskal-
Wallis 

Brown-
Forsythe 

Welch 

n1 = 25 0.00 0.0512 0.0484 0.0510 0.0511 0.156 

n2 = 25 0.10 0.1086 0.1055 0.1083 0.1082 0.391 

n3 = 25 0.25 0.4467 0.4462 0.4459 0.4435 0.878 

 0.40 0.8529 0.8564 0.8525 0.8499 0.738 

 0.65 0.9989 0.9991 0.9989 0.9987 0.999 

n1 = 5 0.00 0.0528 0.0398 0.0436 0.0458 < 0.001 

n2 = 5 0.10 0.0641 0.0486 0.0534 0.0554 < 0.001 

n3 = 5 0.25 0.1161 0.0926 0.0985 0.1034 < 0.001 

 0.40 0.2225 0.1838 0.1918 0.2019 < 0.001 

 0.65 0.4907 0.4378 0.4474 0.4549 < 0.001 

n1 = 5 0.00 0.0498 0.0447 0.0533 0.0610 < 0.001 

n2 = 5 0.10 0.0704 0.0619 0.0671 0.0785 < 0.001 

n3 = 25 0.25 0.1925 0.1710 0.1508 0.1625 < 0.001 

 0.40 0.4327 0.3890 0.3167 0.3267 < 0.001 

 0.65 0.8440 0.8000 0.6782 0.6457 < 0.001 

n1 = 5 0.00 0.0489 0.0474 0.0621 0.0623 < 0.001 

n2 = 25 0.10 0.0750 0.0699 0.0846 0.0849 < 0.001 

n3 = 25 0.25 0.2219 0.2132 0.2161 0.2059 < 0.001 

 0.40 0.5023 0.4915 0.4590 0.4431 < 0.001 

 0.65 0.8999 0.8958 0.8417 0.8289 < 0.001 

Table 7: Proportion of significant tests, moderately skewed data and equidistance 

Sample 
sizes 

Effect 
size 

Test procedure 

p-value 
ANOVA 

Kruskal-
Wallis 

Brown-
Forsythe 

Welch 

n1 = 25 0.00 0.0510 0.0486 0.0503 0.0496 0.364 

n2 = 25 0.10 0.1089 0.1046 0.1083 0.1071 0.168 

n3 = 25 0.25 0.4609 0.4453 0.4587 0.4589 < 0.001 

 0.40 0.8714 0.8585 0.8702 0.8706 0.089 

 0.65 0.9993 0.9990 0.9993 0.9992 0.999 

n1 = 5 0.00 0.0500 0.0423 0.0436 0.0317 < 0.001 

n2 = 5 0.10 0.0592 0.0513 0.0511 0.0393 < 0.001 

n3 = 5 0.25 0.1064 0.0929 0.0929 0.0714 < 0.001 

 0.40 0.2100 0.1876 0.1838 0.1417 < 0.001 
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Sample 
sizes 

Effect 
size 

Test procedure 

p-value 
ANOVA 

Kruskal-
Wallis 

Brown-
Forsythe 

Welch 

 0.65 0.4862 0.4629 0.4294 0.2950 < 0.001 

n1 = 5 0.00 0.0487 0.0431 0.0514 0.0458 < 0.001 

n2 = 5 0.10 0.0542 0.0591 0.0784 0.0767 < 0.001 

n3 = 25 0.25 0.1391 0.1516 0.1890 0.1847 < 0.001 

 0.40 0.3397 0.3639 0.3925 0.3831 < 0.001 

 0.65 0.7885 0.8055 0.7824 0.6599 < 0.001 

n1 = 5 0.00 0.0488 0.0456 0.0551 0.0520 < 0.001 

n2 = 25 0.10 0.0652 0.0672 0.0882 0.0844 < 0.001 

n3 = 25 0.25 0.1916 0.1952 0.2444 0.2230 < 0.001 

 0.40 0.4523 0.4573 0.5231 0.4625 < 0.001 

 0.65 0.8792 0.8818 0.9113 0.7315 < 0.001 

Table 8 shows the results from the case where data are moderately skewed and the EOS effect is present. At 
(25, 25, 25), KW is significantly more powerful than any other method at medium and large effect sizes. At (5, 
5, 5), all methods except A are too conservative, an effect that stays as the effect size becomes larger. W is less 
powerful than KW and BF at all effect sizes, and KW in turn dominates BF. At (5, 5, 25) and (5, 25, 25), W is 
exceedingly liberal while A is more powerful than the other methods in most cases except KW at large effect 
sizes. KW is also generally more powerful than BF. Hence, when all sample sizes are large, KW should be 
recommended if data are moderately skewed and the EOS effect is present. However, A should be the 
preferred method when at least one sample size is small as it then dominates the other three methods for 
most combinations of effect sizes and sample sizes. 

Table 8: Proportion of significant tests, moderately skewed data and end-of-scale effect 

Sample 
sizes 

Effect 
size 

Test procedure 

p-value 
ANOVA 

Kruskal-
Wallis 

Brown-
Forsythe 

Welch 

n1 = 25 0.00 0.0504 0.0486 0.0501 0.0514 0.282 

n2 = 25 0.10 0.1051 0.1046 0.1043 0.1038 0.936 

n3 = 25 0.25 0.4225 0.4453 0.4213 0.4174 < 0.001 

 0.40 0.8365 0.8585 0.8357 0.8316 < 0.001 

 0.65 0.9985 0.9990 0.9985 0.9984 0.999 

n1 = 5 0.00 0.0506 0.0423 0.0347 0.0300 < 0.001 

n2 = 5 0.10 0.0599 0.0513 0.0428 0.0370 < 0.001 

n3 = 5 0.25 0.1054 0.0929 0.0790 0.0681 < 0.001 

 0.40 0.2089 0.1876 0.1678 0.1370 < 0.001 

 0.65 0.4958 0.4629 0.4334 0.2947 < 0.001 

n1 = 5 0.00 0.0465 0.0431 0.0474 0.0971 < 0.001 

n2 = 5 0.10 0.0736 0.0591 0.0538 0.0684 < 0.001 

n3 = 25 0.25 0.1853 0.1516 0.1136 0.0886 < 0.001 

 0.40 0.4018 0.3639 0.2721 0.1845 < 0.001 

 0.65 0.8167 0.8055 0.6965 0.4426 < 0.001 

n1 = 5 0.00 0.0477 0.0456 0.0608 0.1121 < 0.001 

n2 = 25 0.10 0.0757 0.0672 0.0715 0.0914 < 0.001 

n3 = 25 0.25 0.2079 0.1952 0.1705 0.1439 < 0.001 

 0.40 0.4596 0.4573 0.3917 0.3098 < 0.001 

 0.65 0.8731 0.8818 0.8314 0.6245 < 0.001 

Table 9 shows the results from the case where data are moderately skewed and the MOS effect is present. At 
(25, 25, 25), KW is significantly more powerful than any other method at medium and large effect sizes, exactly 
as under the EOS effect. At (5, 5, 5), BF and W are very conservative, and A and KW have more power than BF 
and W at all effect sizes. When the effect size is large or very large, KW also has more power than A. At (5, 5, 
25) and (5, 25, 25), W becomes excessively liberal, which suggests that it should be avoided. It should also be 
noted that the MOS effect actually reduces the percentage of significant As at (5, 5, 25) when the effect size 
increases from none to a small size. However, BF generally has more power than both A and KW without 
resulting in a large number of type I errors. KW is in turn also more powerful than A. Hence, when data are 
moderately skewed and the MOS effect is present, KW should be the preferred choice when sample sizes are 
equal and BF when sample sizes are unequal. 
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Table 9: Proportion of significant tests, moderately skewed data and middle-of-scale effect 

Sample 
sizes 

Effect 
size 

Test procedure 
p-value 

ANOVA 
Kruskal-
Wallis 

Brown-
Forsythe 

Welch 

n1 = 25 0.00 0.0498 0.0486 0.0486 0.0535 0.001 

n2 = 25 0.10 0.1019 0.1046 0.0998 0.1064 0.006 

n3 = 25 0.25 0.4197 0.4453 0.4164 0.4260 < 0.001 

 0.40 0.8322 0.8585 0.8298 0.8357 < 0.001 

 0.65 0.9982 0.9990 0.9981 0.9984 0.999 

n1 = 5 0.00 0.0435 0.0423 0.0202 0.0150 < 0.001 

n2 = 5 0.10 0.0491 0.0513 0.0240 0.0201 < 0.001 

n3 = 5 0.25 0.0893 0.0929 0.0469 0.0396 < 0.001 

 0.40 0.1689 0.1876 0.0967 0.0840 < 0.001 

 0.65 0.3809 0.4629 0.2437 0.1922 < 0.001 

n1 = 5 0.00 0.0463 0.0431 0.0585 0.1266 < 0.001 

n2 = 5 0.10 0.0313 0.0591 0.0961 0.2174 < 0.001 

n3 = 25 0.25 0.0684 0.1516 0.2160 0.4026 < 0.001 

 0.40 0.1956 0.3639 0.4069 0.5755 < 0.001 

 0.65 0.6178 0.8055 0.7332 0.7021 < 0.001 

n1 = 5 0.00 0.0466 0.0456 0.0546 0.1541 < 0.001 

n2 = 25 0.10 0.0503 0.0672 0.0915 0.2374 < 0.001 

n3 = 25 0.25 0.1433 0.1952 0.2575 0.4028 < 0.001 

 0.40 0.3581 0.4573 0.5365 0.5794 < 0.001 

 0.65 0.7878 0.8818 0.9089 0.7390 < 0.001 

Table 10 shows the results from the case where data are heavily skewed but equidistant. At (25, 25, 25), W is 
somewhat more liberal than BF and more powerful at small or medium effect sizes. KW is less powerful than 
all other methods at medium effect size. At (5, 5, 5), A and KW are more powerful than BF and W at all effect 
sizes, and A is also more powerful than KW at a very large effect size. At (5, 5, 25) and (5, 25, 25), BF is 
predominant at all effect sizes and KW in turn dominates A. It should be noted that W is completely ineffective 
in case of a very large effect size, since all observed values in one of the three groups become equal to the end 
point of the scale, corresponding with a zero variance. W is also generally inefficient when at least one sample 
size is small, as the probability of a zero variance in at least one group increases. Hence, when data are heavily 
skewed but equidistant, A should be the recommended method at equal sample sizes, while BF should be 
preferred when sample sizes are unequal. In other words, the recommendation for equidistant data under 
heavy skewness is identical to the one under moderate skewness.  
 
Table 11 shows the results from the case where data are heavily skewed and the EOS effect is present. At (25, 
25, 25), there are no significant differences in performance between the methods; however, at (5, 5, 5), A 
dominates the other methods at all effect sizes while KW generally performs better than BF and W. At (5, 5, 
25) and (5, 25, 25), BF is again generally predominant at all effect sizes; however, A dominates KW. Thus, when 
data are heavily skewed and the EOS effect is present, A should be the recommended method at equal sample 
sizes, while BF should be preferred when sample sizes are unequal. Note that these recommendations deviate 
from those under moderate skewness. 

Table 10: Proportion of significant tests, heavily skewed data and equidistance 

Sample 
sizes 

Effect 
size 

Test procedure 
p-value 

ANOVA 
Kruskal-
Wallis 

Brown-
Forsythe 

Welch 

n1 = 25 0.00 0.0481 0.0480 0.0473 0.0514 0.016 

n2 = 25 0.10 0.1082 0.1041 0.1065 0.1120 0.001 

n3 = 25 0.25 0.4569 0.4391 0.4529 0.4646 < 0.001 

 0.40 0.8879 0.8757 0.8853 0.8906 0.066 

 0.65 1.0000 1.0000 1.0000 0.0000 < 0.001 

n1 = 5 0.00 0.0435 0.0421 0.0365 0.0077 < 0.001 

n2 = 5 0.10 0.0529 0.0510 0.0438 0.0095 < 0.001 

n3 = 5 0.25 0.0930 0.0900 0.0765 0.0165 < 0.001 

 0.40 0.1839 0.1839 0.1511 0.0269 < 0.001 

 0.65 0.4487 0.4813 0.3633 0.0000 < 0.001 
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Sample 
sizes 

Effect 
size 

Test procedure 

p-value 
ANOVA 

Kruskal-
Wallis 

Brown-
Forsythe 

Welch 

n1 = 5 0.00 0.0468 0.0417 0.0479 0.0086 < 0.001 

n2 = 5 0.10 0.0365 0.0414 0.0852 0.0082 < 0.001 

n3 = 25 0.25 0.0814 0.1092 0.2126 0.0278 < 0.001 

 0.40 0.2219 0.2895 0.4347 0.0838 < 0.001 

 0.65 0.6906 0.8133 0.8268 0.0000 < 0.001 

n1 = 5 0.00 0.0471 0.0441 0.0582 0.0163 < 0.001 

n2 = 25 0.10 0.0526 0.0557 0.1017 0.0190 < 0.001 

n3 = 25 0.25 0.1518 0.1605 0.2682 0.0632 < 0.001 

 0.40 0.3735 0.3941 0.5697 0.1501 < 0.001 

 0.65 0.8301 0.8769 0.9824 0.0000 < 0.001 

Table 11: Proportion of significant tests, heavily skewed data and end-of-scale effect 

Sample 
sizes 

Effect 
size 

Test procedure 
p-value 

ANOVA 
Kruskal-
Wallis 

Brown-
Forsythe 

Welch 

n1 = 25 0.00 0.0500 0.0480 0.0496 0.0520 0.046 

n2 = 25 0.10 0.1074 0.1041 0.1066 0.1083 0.196 

n3 = 25 0.25 0.4451 0.4391 0.4437 0.4480 0.206 

 0.40 0.8769 0.8757 0.8760 0.8758 0.997 

 0.65 1.0000 1.0000 1.0000 0.0000 < 0.001 

n1 = 5 0.00 0.0532 0.0421 0.0385 0.0102 < 0.001 

n2 = 5 0.10 0.0640 0.0510 0.0469 0.0126 < 0.001 

n3 = 5 0.25 0.1114 0.0900 0.0844 0.0215 < 0.001 

 0.40 0.2198 0.1839 0.1758 0.0330 < 0.001 

 0.65 0.5563 0.4813 0.4602 0.0000 < 0.001 

n1 = 5 0.00 0.0468 0.0417 0.0445 0.0144 < 0.001 

n2 = 5 0.10 0.0510 0.0414 0.0654 0.0107 < 0.001 

n3 = 25 0.25 0.1321 0.1092 0.1575 0.0124 < 0.001 

 0.40 0.3346 0.2895 0.3569 0.0275 < 0.001 

 0.65 0.8603 0.8133 0.8761 0.0000 < 0.001 

n1 = 5 0.00 0.0470 0.0441 0.0678 0.0186 < 0.001 

n2 = 25 0.10 0.0607 0.0557 0.1079 0.0179 < 0.001 

n3 = 25 0.25 0.1700 0.1605 0.2597 0.0477 < 0.001 

 0.40 0.4087 0.3941 0.5361 0.1060 < 0.001 

 0.65 0.8946 0.8769 0.9946 0.0000 < 0.001 

Finally, table 12 shows the results from the case where data are heavily skewed and the MOS effect is present. 
At (25, 25, 25), KW dominates all other methods at all effect sizes, except when the effect size is small, in 
which case it does not differ significantly from W. At (5, 5, 5), KW is also predominant at all effect sizes. At (5, 
5, 25) and (5, 25, 25), however, BF has higher power than the other methods at all effect sizes except the very 
large one. Hence, under heavy skewness and MOS effect, A should be the recommended method at equal 
sample sizes, while BF should be preferred when sample sizes are unequal. Again, these recommendations are 
identical to the recommendations under moderate skewness. 

Table 12: Proportion of significant tests, heavily skewed data and middle-of-scale effect 

Sample 
sizes 

Effect 
size 

Test procedure 

p-value 
ANOVA 

Kruskal-
Wallis 

Brown-
Forsythe 

Welch 

n1 = 25 0.00 0.0434 0.0480 0.0400 0.0553 < 0.001 

n2 = 25 0.10 0.0898 0.1041 0.0848 0.1080 < 0.001 

n3 = 25 0.25 0.3764 0.4391 0.3658 0.4126 < 0.001 

 0.40 0.8059 0.8757 0.7976 0.8369 < 0.001 

 0.65 0.9999 1.0000 0.9998 0.0000 < 0.001 

n1 = 5 0.00 0.0292 0.0421 0.0143 0.0007 < 0.001 

n2 = 5 0.10 0.0355 0.0510 0.0165 0.0008 < 0.001 

n3 = 5 0.25 0.0602 0.0900 0.0282 0.0026 < 0.001 

 0.40 0.1151 0.1839 0.0500 0.0049 < 0.001 

 0.65 0.2746 0.4813 0.1167 0.0000 < 0.001 
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Sample 
sizes 

Effect 
size 

Test procedure 

p-value 
ANOVA 

Kruskal-
Wallis 

Brown-
Forsythe 

Welch 

n1 = 5 0.00 0.0576 0.0417 0.0668 0.0041 < 0.001 

n2 = 5 0.10 0.0279 0.0414 0.1453 0.0162 < 0.001 

n3 = 25 0.25 0.0173 0.1092 0.3330 0.0762 < 0.001 

 0.40 0.0405 0.2895 0.5322 0.1754 < 0.001 

 0.65 0.2082 0.8133 0.7263 0.0000 < 0.001 

n1 = 5 0.00 0.0479 0.0441 0.0462 0.0183 < 0.001 

n2 = 25 0.10 0.0415 0.0557 0.0822 0.0417 < 0.001 

n3 = 25 0.25 0.1037 0.1605 0.2208 0.1343 < 0.001 

 0.40 0.2536 0.3941 0.4668 0.2561 < 0.001 

 0.65 0.6133 0.8769 0.8555 0.0000 < 0.001 

4. Conclusion 

The methodological issue of whether a Likert-type scale can be reasonably assumed to have metric properties 
and the type of statistical method that should consequently be used to analyse Likert-type data goes back a 
long time, and has been discussed in relation to a number of paradigms. Still, parametric methods are often 
used in contemporary research to analyse data that are not equidistant by nature (Jakobsson, 2004). In this 
study, we saw that respondents generally did not perceive a Likert-type scale as equidistant, and that the 
nature of the perceived non-equidistance depended on how verbal anchors were connected to the scale 
points. We also tested the sensitivity of common statistical methods to the two main types of non-
equidistance under different circumstances. The overall conclusion from these simulations was that the best 
statistical method to compare different groups of Likert-type data seems to depend both on the expected 
scale effect, that is, the nature of the non-equidistance created by the use of verbal anchors and on the degree 
of skewness (see figure 4). Hence, this study contributes to the methodological literature in two different 
ways. 

Skewness 
Expected scale effect 

Equidistance End-of-scale Middle-of-scale 

Approximate 
symmetry 

ANOVA Kruskal-Wallis ANOVA 

Moderate 
skewness 

ANOVA (if sample sizes 
are approximately equal) 

or Brown-Forsythe 
(otherwise) 

Kruskal-Wallis (if all sample sizes 
are large) or ANOVA (otherwise) Kruskal-Wallis (if sample sizes 

are approximately equal) or 
Brown-Forsythe (otherwise) 

Heavy 
skewness 

ANOVA (if sample sizes are 
approximately equal) or Brown-

Forsythe (otherwise) 

Figure 4: The preferred method with respect to expected scale effect and skewness 

Further research regarding subject perceptions of the Likert-type scale is required. The standard verbal 
anchors for the second and fourth scale points are ‘Disagree’ and ‘Agree’, respectively. Changing them to, for 
example, ‘Somewhat disagree’ and ‘Somewhat agree’ might change the way subjects perceive the scale in 
terms of distance between the points. Scales with more, or less, than five scale points should also be evaluated 
in a similar manner. 
 
Further research is also required to evaluate the robustness of parametric methods to violations of the 
equidistance assumption. Other types of non-equidistant data can be used to evaluate the robustness of the 
parametric methods in more detail, as well as other types of statistical tests commonly used to analyse Likert-
type data.  
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