Participant Carelessness: Is It a Substantial Problem With Survey Data?

Shelly Marasi¹, Alison Wall² and Kristen Brewer³

¹Tennessee Technological University, College of Business, Department of Decision Sciences & Management, Cookeville, USA

²Southern Connecticut State University, School of Business, Department of Management and MIS, New Haven, USA

³Eastern Kentucky University, College of Business and Technology, Department of Management, Marketing, and International Business, Richmond, USA

smarasi@tntech.edu
walla4@southernct.edu
kristen.brewer@eku.edu

Abstract: For decades, participant carelessness has been considered a problem in collecting data using surveys. Although participant carelessness cannot be disputed to exist, the impact it has on data quality or the level of influence or bias it produces in results is questionable. The main purpose of this paper is to determine whether participant carelessness is a substantial problem that significantly influences or biases the results of statistical analyses. This is accomplished by analyzing established management relationships through a comparison of the full, careful, and careless samples to determine the impact participant carelessness has on data results regarding correlations, t-tests, and simple linear regressions. Four detection approaches were used to identify careless participants individually, in pairs, and in three method combinations. The second purpose of this paper is to use the resampled individual reliability (RIR) approach to detect careless participants and compare it to the individual reliability approach to determine whether the two approaches are fundamentally similar. Data were collected using Mechanical Turk (N = 678). Based on the findings, participant carelessness does not appear to be a substantial problem or demonstrate levels of bias in the results in this study. There are two significant differences between the full and careful samples with the t-tests and the regression comparisons of fit statistics demonstrate the careful samples to have a weak improvement over the full sample; however, none indicate bias. The findings also suggest that the individual reliability and the RIR approaches are not entirely fundamentally similar.

Keywords: participant carelessness, insufficient effort responding, careless responding, random responding

1. Introduction

Participant carelessness has been argued to be a problem for researchers using surveys to collect data for decades (e.g., Thompson, 1975; Schmitt and Stults, 1985). The challenges of participant carelessness are believed to be growing due to the increasing usage of online data collection. This phenomenon is also referred to as insufficient effort responding or IER (e.g., Huang, et al., 2012; Liu, et al., 2013; Huang, et al., 2015; Huang, Liu and Bowling, 2015; Bowling, et al., 2016; McGonagle, Huang and Walsh, 2016), random responding (e.g., Thompson, 1975; Johnson, 2005; Credé, 2010), and careless responding (Schmitt and Stults, 1985; Meade and Craig, 2012; Maniaci and Rogge, 2014).

Participant carelessness occurs when participants fail to read and/or follow survey instructions or item content or do not take the survey seriously and thereby, may not provide accurate and usable data (Chami-Castaldi, Reynolds and Wallace, 2008; Huang, et al., 2012; Liu, et al., 2013; Bowling, et al., 2016). Therefore, participant carelessness is considered a methodological problem that may lead to measurement error or undesirable effects on the quality and value of the data (Bowling, et al., 2016). This phenomenon has been argued to be an important issue as it may potentially reduce scale reliability (e.g., Huang, et al., 2012; Meade and Craig, 2012) and validity (e.g., Huang, et al., 2012; Aust, et al., 2013; Liu, et al., 2013), lead distinct constructs to be indistinguishable (e.g., Huang, et al., 2012), and cause correlations and other analyses to produce inaccurate results (e.g., Credé, 2010; Maniaci and Rogge, 2014; McGonagle, Huang and Walsh, 2016). For instance, relationships may possibly be altered or obscured between two variables resulting in Type II error (e.g., Meade and Craig, 2012; Maniaci and Rogge, 2014; Huang, Liu and Bowling, 2015; McGonagle, Huang and Walsh, 2016) or Type I error (e.g., Maniaci and Rogge, 2014; ISSN 1477-7029

Reference this paper: Marasi, S., Wall, A., and Brewer, K., 2019. Participant Carelessness: Is It a Substantial Problem With Survey Data?. *The Electronic Journal of Business Research Methods*, 17(1), pp. 1-16, available online at www.ejbrm.com

McGonagle, Huang and Walsh, 2016). These bias issues may lead to data being unusable and costly regarding time and survey administration expenses as it decreases the sample size, which may require more data to be collected.

2. Literature Review

As a common methodological problem that possibly produces bias in survey data results, participant carelessness concerns are similar to those associated with common method variance or CMV (McGonagle, Huang and Walsh, 2016) in that while many researchers acknowledge it is a potential problem, it is questioned as to when and how it creates bias in results or reduces the legitimacy of findings (e.g., Spector, 2006). CMV is defined as "variance that is attributable to the measurement method rather than to the construct of interest" (Podsakoff, et al., 2003, p.879). For decades, some researchers have considered CMV to be a major issue in self-report surveys and single source data that needs to be corrected or controlled for when collecting data (e.g., Campbell and Fiske, 1959; Cote and Buckley, 1988; Podsakoff, et al., 2003; Podsakoff, MacKenzie and Podsakoff, 2012). However, others argue that CMV is an overstated problem, a myth, or the bias does not exist to a level that delegitimizes findings (e.g., Spector, 1987; 2006; Vandenberg, 2006; Richardson, Simmering and Sturman, 2009; Fuller, et al., 2016). Since CMV has researchers taking positions on both sides of the spectrum arguing whether it is or is not a problem with data quality and causes bias in the results, participant carelessness should also be examined to determine whether it creates a major issue in data quality and leads to biasing levels in the results. Undoubtedly, no arguments can be made that participant carelessness does not exist (unlike with CMV) as many researchers have experienced careless participants at some point in collecting survey data. Consequently, the argument of participant carelessness not being a serious problem in data analyses deserves examination as has been investigated with CMV.

Therefore, the main purpose of this paper is to determine whether participant carelessness is a substantial problem that significantly influences or biases the results of data analyses using different statistical techniques. This is accomplished by analyzing established management relationships through a comparison of the samples (full, careful, and careless) to determine the impact participant carelessness has on data results regarding correlations, t-tests (one-sample t-tests and independent samples t-tests), and simple linear regression. The analyses are conducted using four participant carelessness detection approaches individually, in pairs, and in combinations of three. The second purpose of this study is to use the resampled individual reliability (RIR) approach as a detection approach and compare it to the individual reliability approach, which have been argued to be similar methods (Curran, 2016) but have yet to be empirically tested according to the authors' knowledge.

3. Theoretical Background

Participant carelessness may occur from participants incorrectly interpreting item content or from being inattentive or careless in responding to the item content. Participant carelessness can occur in various types of surveys, such as those involving academic research, organizational questionnaires (for employees or customers), performance appraisals, and student evaluations.

Participant carelessness may take the form of random responses or nonrandom repeated responses. Random responses entail participants marking responses randomly with no specific pattern. Nonrandom repeated responses involve participants responding in a systematic series or specific sequence, such as straightlining (marking the same response option for every item on a page), near straightlining (straightlining with one item being given a different marking on a page), alternating pattern (marking two or more responses in a rotating pattern), extreme response patterns (marking the extremes responses in a rotating pattern), diagonal pattern in an ascending or descending order, among other patterns.

Participant carelessness may also be unintentional/occasional or intentional. Unintentional or occasional participant carelessness involves participants not fully comprehending some or all item content (which may be due to the wording of the items), having distractions while taking the survey (which may lead participants to be careless in certain parts of the survey or the whole survey), or gradually losing focus over time in completing the survey (and participants may or may not become attentive again). Intentional participant carelessness entails

participants purposefully being careless by marking any response, not taking the survey seriously, or speeding through the survey in attempt to complete it as quickly as possible.

3.1 Detection Approaches

Numerous methods have been developed over the years to detect participant carelessness, which make handling this phenomenon easier (Johnson, 2005). Researchers should decide which approach(es) they will utilize to control for participant carelessness before and perhaps during the data collection, even when it is performed in a post hoc manner. Many of the approaches are significantly correlated with one another (e.g., Huang, et al., 2012; Huang, et al., 2015) and demonstrate convergence, suggesting that several approaches together may effectively detect participant carelessness (e.g., Wise and Kong, 2005; Huang, et al., 2015; Bowling, et al., 2016). The decision to utilize a certain approach varies depending on the length of the survey (e.g., short or long), the format of the survey (e.g., online or paper), the practicality and feasibility of the approach's usage, the approach's probability to incorrectly identify attentive participants as careless, and the approach's potential to cause negative reactions in the participants.

Detection approaches are reactive techniques that attempt to control for careless participants after the data has been collected by eliminating them before the analyses (either in a priori or post hoc manner). Therefore, researchers can identify the number of careless participants in a study. A priori detection approaches involve measuring participant carelessness by adopting statements into the survey design before data collection. Post hoc detection approaches involve measuring participant carelessness after data has been collected and generally do not require any special considerations in the survey design. For an overview and description of all detection approaches refer to Huang, et al. (2012) and Curran (2016).

The detection approaches of interest to this study are the instructed response items, the response time, the individual reliability, and the RIR. These five methods were chosen based on the following reasons. First, the instructed response items, the response time, and the individual reliability approaches are three of the five most common detection approaches utilized to identify careless participants (Liu, et al., 2013). The response time and the individual reliability approaches have demonstrated to be powerful techniques in detecting careless participants and valuable in controlling for this phenomenon (Huang, et al., 2012). The instructed response items approach is one of two methods that have shown to result in participants having the greatest positive perceptions towards a survey and its' design with using a detection approach (Huang, et al., 2015). The RIR approach was used since the authors have no knowledge of it being used in a previous study to detect careless participants or compared to the individual reliability approach, which Curran (2016) argues will produce similar results in detecting careless participants.

3.2 Instructed Response Items

This approach was termed by Meade and Craig (2012) and is based on Hough, et al.'s (1990) Nonrandom Response scale. It involves embedding items in a survey that consist of statements that have clear plausible answers. Therefore, participants should provide a specific response given they read the item content. Participants who do not mark the 'correct' response are deemed careless. Item examples include "Please skip this question." and "This is a control question. Mark 'Mostly True' and move on." (Maniaci and Rogge, 2014). These items are interspersed throughout a survey and tend to be placed within the variables' scale items towards the middle or end of a page to better conceal their discovery. Also, these items should not have a uniform wording direction. For instance, the items should not require always marking the fourth response or responses at the lower or higher end of a scale as this may not identify certain careless participants.

There are two main determinations that must be made to use this approach. First, researchers must determine how to eliminate participants based on carelessness. One technique is to use a cutoff score based on an average of the items (e.g., 0 = item incorrectly answered, 1 = item correctly answered) and participants with an average below the predetermined cutoff score, which is determined prior to data collection, are eliminated from the analyses because they are viewed as being careless (e.g., Hough, et al., 1990; Maniaci and Rogge, 2014; Bowling, et al., 2016; McGonagle, Huang and Walsh, 2016). For instance, a study having eight instructed response items with a

cutoff score of six will remove participants who have an average less than six (or miss at least three of the instructed response items). The second technique is to eliminate participants for missing one of the instructed response items (e.g., Hauser and Schwarz, 2016). The second determination involves deciding on the number of instructed response items that should be embedded in the survey. Having too few items may not properly identify careless participants as participants may become careless throughout different parts of the survey (or cycle between attentiveness and carelessness). Alternatively, too many items may irritate participants, resulting in participants having negative reactions to the survey or leading them to partake in unpredictable answers for amusement purposes. The recommendation is to incorporate one item per every fifty to one hundred legitimate scale items (Meade and Craig, 2012) or utilize one item on every other page (Maniaci and Rogge, 2014).

3.3 Response Time

This approach was developed by Wise and Kong (2005) and is also referred to as the page time method (Huang, et al., 2012; Bowling, et al., 2016). It analyzes the entire time spent on completing the survey or a webpage. The assumption of this approach is that extremely short response times indicate participant carelessness since a minimum amount of time is needed to complete a survey as some degree of time for cognitive processing is needed to read, understand, and then respond to each item (Huang, et al., 2012; Meade and Craig, 2012; Maniaci and Rogge, 2014; Huang, et al., 2015; Bowling, et al., 2016). For example, a participant that completes a survey consisting of fifty items in one minute would demonstrate carelessness as all items could not have been read, comprehended, and accurately answered within the short amount of time.

This approach can only be used with online surveys and a cutoff time must be identified. There are two ways a cutoff time can be established. First, an average response time for completing the survey (e.g., Weathers and Bardakci 2015) or webpage (Huang, et al., 2012) can be calculated and participants who fall significantly below the average are considered careless. For example, when the average time for survey completion is seven minutes, a participant who finishes it in two minutes is deemed a careless participant. Second, a response time per item can be established and summated prior to data collection and participants who do not meet the overall cutoff time are eliminated for carelessness. The recommendation is a cutoff time of two seconds per item (e.g., Bowling, et al., 2016). However, long response time outliers (which may be due to participants taking a break or being distracted while completing the survey) need to be accounted for in the calculating the average response time.

3.4 Individual Reliability

This approach was created by Jackson (1977) and is also referred to as the "even-odd consistency" approach (e.g., Meade and Craig, 2012; Maniaci and Rogge, 2014). It involves dividing a variable's scale items using an even- and odd-split, creating half-scale scores or two subscales of an overall variable scale (an even and an odd subscale). The split is determined based on the order the items appear in the survey. For example, a six-item scale would have items appearing first, third, and fifth in the survey being in the odd subscale and the even subscale consisting of items appearing second, fourth, and sixth. Negatively worded items are reverse-coded beforehand. The two subscales are then compared for within-person reliability through correlations. Therefore, comparison correlations are computed for every variable scale per each participant. This approach is based on the foundation that items belonging to the same scale are expected to correlate with each other and it is suggested that correlations less than .30 indicate careless participants (Jackson, 1977).

This approach requires variable scales that have enough items to form the two subscales as one item subscales are unusable (Curran, 2016). Therefore, variable scales must consist of at least four items for this approach to be used properly. The recommendation is for a minimum of six items per variable scale since the subscale scores are constrained by the number of items in the scale. This approach can be used with unidimensional scales and multidimensional scales, given there are enough items in each subdimension to create two subscales (Curran, 2016).

3.5 RIR

This approach is proposed as an alternative to the individual reliability approach, but the division of items for the two subscales is based on randomness (Curran, 2016). For example, a six-item scale may be divided by items 1, 4, and 5 being in one subscale and the second subscale consisting of items 2, 3, and 6. The rationale for this approach

www.ejbrm.com 4 ©ACPIL

is that since there is nothing fundamentally unique about the subscales' composition following the even-odd-split, similar scores should be produced from randomly drawn subscales (Curran, 2016). Additionally, this approach allows for multiple pairs of subscales to be created with the assumption that none of the pairs are better than the other, including the even-odd-split subscales (Curran, 2016). Even though multiple random assignments for a scale can be created, only a single random assignment of a variable scale's items per participant is necessary. Similar to the individual reliability approach, this approach has the same requirements for the number of scale items (minimum of four items per scale) and recommendation of a correlation cutoff score of .30.

4. Research Questions

The main objective of this study is to determine whether participant carelessness is a substantial problem for researchers that significantly influences or biases results from different statistical analyses. This is determined by identifying whether there are significant differences in correlations, *t*-tests, and simple linear regression, regarding the inclusion and exclusion of careless participants in a sample involving established management relationships. Specifically, the constructs included job satisfaction (JS), organizational commitment (OC), and organizational citizenship behaviors (OCB). Meta-analyses demonstrate that higher levels of JS and OC result in greater engagement of OCB and that JS and OC are correlates (e.g., LePine, Erez and Johnson, 2002; Meyer, et al., 2002). Since these relationships have been frequently researched and recognized in the management literature, differences in the analyses between the samples that include and exclude careless participants should be evident. Therefore, the following research questions are proposed:

Research Question 1: To what extent does participant carelessness influence or bias the results of different statistical analyses?

Research Question 2: To what extent are the individual reliability and the RIR approaches fundamentally similar?

5. Method

Participants were recruited using an online survey organization, Mechanical Turk. The compensation for participants was twenty-five cents. Participants consented to participate in the survey and then were given instructions to complete it. Participants were anonymous to the researchers. A response rate is unable to be identified due to the operation of Mechanical Turk.

The sample consisted of 678 respondents residing in the U.S. Participants ranged from 18 to 72 years old with the mean age being 35 years. The sample was predominately comprised of females (56%), whites (78%), and those possessing a bachelor's degree or higher (57%).

5.1 Measures

JS was assessed with Cammann, et al.'s (1983) three-item Job Satisfaction scale, which was measured using a 7-point Likert-type scale (1 = strongly disagree, 7 = strongly agree). One item was reverse-coded. An item example is "All in all, I am satisfied with my job." The items were averaged to produce the scale (α = .93 full sample).

OC was assessed with Mowday, Steers and Porter's (1979) short-version Organizational Commitment scale consisting of eight items (Commeiras and Fournier, 2001), which was measured using a 7-point Likert-type scale (1 = strongly disagree, 7 = strongly agree). "I really care about the fate of this organization" is an item example. The items were averaged to produce the scale (α = .93 full sample).

OCB were measured using Williams and Anderson's (1991) fourteen-item Organizational Citizenship Behaviors scale, which was measured using a 5-point Likert-type scale (1 = strongly disagree, 5 = strongly agree). Three items were reverse-coded. An item example is "Helps others who have been absent." The items were averaged to produce the scale (α = .83 full sample).

Three additional scales and five demographic questions were included in the survey to produce a medium length survey and receive a better representation of participant carelessness. The following scales were included:

Williams and Anderson's (1991) In-role Behavior scale, which consists of seven items with two being reverse-coded; Burton, et al.'s (1998) Private Label Attitude scale, consisting of the five positively-worded items; Miller and Chiodo's (2008) Attitudes towards the Color Blue scale, including the four positively-worded items. All three additional scales were measured using a 5-point Likert-type scale (1 = strongly disagree, 5 = strongly agree). Therefore, there were fifty questions in the survey with an expected completion time of ten to fifteen minutes depending on the participant.

5.2 Approaches

Three instructed response items were used with one being inputted on every other webpage (Maniaci and Rogge, 2014). An item example is "Select disagree for this item." The cutoff score was one. Therefore, participants who missed any of the instructed response items were deemed careless.

The response time approach was utilized with a cutoff time set at one-third of the average time of the survey completion after outliers (over twenty-five minutes) were removed. The average time for survey completion was 12 minutes and 43 seconds, yielding a cutoff time of 3 minutes and 11 seconds. Participants that completed the survey in less time than the cutoff time were deemed careless.

The individual reliability and the RIR approaches were used with a cutoff score of .30 and participants with correlations less than .30 were identified as careless. Therefore, participants that did not meet the cutoff on either the OC or OCB scale were deemed careless. For the RIR approach, the first subscale of OC consisted of items 1, 2, 5, and 6 and the second subscale included items 3, 4, 7, and 8; whereas, the first OCB subscale included items 1, 4, 6, 8, 9, 11, and 13 and the second subscale consisted of items 2, 3, 5, 7, 10, 12, and 14. Both of these approaches were unable to be used on the JS scale since it is does not meet the required four-item threshold.

Results

Three samples were yielded from the approaches (individually and in combination): full, careful, and careless. Following suggestions from scholars (e.g., McGonagle, Huang and Walsh, 2016), analyses included a comparison of the full sample to the subsamples (careful and careless) and a comparison of the subsamples.

Correlations were compared between the three samples by conducting the Fisher's z-transformation to calculate a z score using VassarStats (Lowry, 2018). One-sample t-tests were conducted in SPSS 25 to compare the full sample's mean to the careful and careless samples' means using the full sample's mean as the population (or test) mean. Independent samples t-tests were conducted in SPSS 25 to compare the means of the careful sample to the careless sample. Cohen's d was conducted in SPSS 25 to determine the effect sizes of the significant t-tests. Simple linear regressions were conducted in SPSS 25 for analyzing the JS-OCB and OC-OCB relationships. The independent variables were mean centered for better result interpretation (Cohen, et al., 2003). The Chow test was conducted in SPSS 25 to determine whether the linear regressions are equal across the careful and careless samples. An examination of the fit statistics (R^2 , adjusted R^2 , and standard error of the estimate or SEE) from the regression produced from SPSS 25 were used to determine whether there was a difference in the linear models between the full sample and the careful and careless samples (Hair Jr., et al., 2010). The differences between the regression models for the samples were determined by the researchers as being minimal (a miniscule difference within .02 in the R^2 , adjusted R^2 , and/or SEE), small (a slight difference between .03 and .09 in the R^2 , adjusted R^2 , and/or SEE), moderate (a difference between .10 and .20 in the R^2 , adjusted R^2 , and/or SEE that demonstrates bias), or large differences (a huge difference in the R^2 , adjusted R^2 , and/or SEE and/or alters the direction and significance of the beta coefficient), with significance being considered for moderate and large differences. The full sample's fit statistics for the JS-OCB relationship are R^2 =.11, adjusted R^2 =.11, SEE=.51, β = .326**, and for the OC-OCB relationship are R^2 =.15, adjusted R^2 =.15, SEE=.50, β =.386^{**}.

Each approach was examined individually and in combinations. For the two approach combinations, all possible combinations were evaluated except for the combination of the individual reliability and the RIR approaches since they are argued to be similar approaches. The three approach combination involved the instructed response items, the response time, and either the individual reliability or the RIR approaches. Therefore, there were four

individual, five paired combinations, and two combinations of three approaches utilized for the statistical analyses (refer to the Appendix for analyses results).

One participant (.15%) was identified as careless in all four approaches. Thirty-seven participants (5.46%) were deemed careless by any combination of three approaches, while 184 participants (27.14%) were determined to be careless by any combination of two approaches. Additionally, the individual reliability and the RIR approaches identified 162 of the same participants as careless, producing a 70.5% overlap.

7. Discussion

Participant carelessness does occur; however, its influence on data quality and statistical analyses may not be a major issue as argued by some researchers. This paper examines whether participant carelessness is a substantial problem and has a significant influence or bias on results. According to the researcher's knowledge, this is the first paper to utilize the RIR approach to detect careless participant and compare it to the individual reliability approach for fundamental similarities. The findings of this study offer several important inferences.

Research Question 1 addresses the extent to which participant carelessness influences or biases the results of different statistical analyses. The findings of the correlations, *t*-tests, and regressions between the samples from the different detection approaches (individually and in combination) provide implications for this research question. However, comparisons between the full and careful samples are most important for making inferences since the elimination of the careless participants results in the careful sample being used for statistical analyses rather than the full sample.

For the correlation analyses, most of the significant differences are between the careful and careless samples with a few being between the full and careless samples. However, there are no significant differences between the full and careful sample in the correlation analyses. Most of the significant differences in the *t*-tests are between the careful and careless samples and between the full and careless samples. However, many of the *t*-tests significant differences have a weak effect size. There are only two significant differences in the *t*-tests between the full and careful samples that show the careful sample has a higher mean than the full sample; however, both have a weak effect size and involve the RIR approach. For the simple linear regression comparisons, there are many significant differences between the careful and careless samples. There are also several moderate to large differences between the full and carefuls samples in the regression comparisons. There are only minimal or small differences in the regression comparisons between the full and careful samples, which do not appear to demonstrate bias. However, most of the differences between the full and careful samples show the careful samples' regression models were negligibly or slightly better than the full samples' regression models.

Therefore, most of the significant differences between the full and careful samples indicate the careful samples have a weak increase in the means and slight improvement in the regression fit statistics (and beta coefficients). This demonstrates that in some instances the results of the full sample (and inclusion of careless participants) are slightly deflated, while other results are slightly inflated. However, these significant differences did not demonstrate the full samples' results to be altered to an extent that causes them from being misinterpreted or delegitimized, such as eliminating or extremely changing significant relationships. Thus, the findings of this study suggest participant carelessness may have negligible or little overall impact in analyses results and may not create a severe issue in data quality by highly influencing or biasing the results of statistical analyses.

This study's implication of participant carelessness contradicts other scholars' claims and findings (e.g., McGonagle, Huang and Walsh, 2016; DeSimone, et al., 2018). However, the difference in findings from this study and others may be due to multiple factors. For instance, the data in this study is real (rather than fully or partially simulated), established management relationships were examined (rather than a single scale or different relationships), and the data was not altered to force a specific number of participants to be careless at specific levels. Thus, participant carelessness may exist, but this study's results suggest that it is not to an extent that delegitimizes the findings or reduces data quality, which is similar to one of the arguments regarding CMV.

However, it should be noted that although this study did not find that the significant differences delegitimized the results or reduced data quality, this may not be the case in other studies using real data.

Research Question 2 involves identifying the extent to which the individual reliability and the RIR approaches are fundamentally similar. The approaches identified many of the same careless participants (n = 162), producing a 70.5% overlap. However, the significant differences detected in the analyses varied between the approaches. In fact, there were thirteen different significant differences identified in the analyses when the approaches were compared individually or in combinations. Additionally, both significant differences in the t-tests between the full and careful samples involve the RIR approach in combination with other approaches, while the individual reliability approach in the same combinations are not significant. Therefore, the results of this study demonstrate the RIR approach does not detect the same participants as careless or perform the same. Thus, the RIR and individual reliability approaches are not entirely fundamentally similar according to the results of this study.

7.1 Research Implications

Participant carelessness has been a major concern for online data collection. However, the results of this study demonstrate that it may not be a major issue in data quality or creating bias in results. Although participant carelessness was not a substantial concern in this study, it may be in other studies. Therefore, the best technique to ensure it does not become a major problem is to utilize at least one detection approach in an online data collection since participants will vary and the results may be different in other studies. Additionally, the RIR and individual reliability approaches appear to not be entirely fundamentally similar and interchangeable. However, the RIR approach may still be a good detection approach for participant carelessness.

Individually, the individual reliability and the RIR approaches identified the highest levels of participant carelessness. These results support previous research that the individual reliability approach is very effective as it outperforms other methods in determining careless participants (e.g., Huang, et al., 2012, Meade and Craig, 2012). The response time approach alone was not very successful in detecting careless participants in this study as it only identified five participants as careless. This finding contradicts previous research that found the response time approach to be a reliable (Wise and Kong, 2005) and effective detection approach (e.g., Huang, et al., 2012; McGonagle, Huang and Walsh, 2016). The instructed response items approach found a modest amount of careless participants and appeared to detect careless participants at different phases of the survey (e.g., beginning, middle, and end).

7.2 Limitations and Future Directions

The first limitation is that this study only included a few scales that have an established relationship and therefore, direct evidence that the results will be similar with other relationships (established or not) or scales cannot be provided. Additionally, this study used online survey data collection methods, which may lead results to not be duplicated with other survey methodologies (e.g., paper surveys). Thus, a future path is to compare the extent of careless participants across different survey methodologies.

This study only utilizing four detection approaches is another limitation. Other detection approaches were not examined and may produce different results than found in this study. Therefore, a future avenue is to explore the influence other detection approaches have on the same statistical analyses. Additionally, another limitation may involve the detection approaches providing false positives (Aust, et al., 2013), which may have occurred with the individual reliability and the RIR approaches since they both identified a large number of careless participants but there was not a complete overlap between the two approaches.

CMV may be a potential limitation. However, two procedural remedies were used, including altering the item order and providing anonymity to participants (Podsakoff, et al., 2003). Harmon's single-factor test was also conducted, which showed that the items did not load on one factor and one factor did not account for most of the covariance (Podsakoff, et al., 2003). Therefore, CMV is unlikely to be present or exist at levels that bias the results.

The external validity or generalizability of the results is the final limitation of this study. The findings may not be generalizable to countries other than the U.S. since the sample was comprised of only U.S. residents. Therefore, a future avenue may be to replicate this study with participants from other countries to identify whether the findings are similar or different.

A final future path is to further investigate the fundamental similarities between the individual reliability and the RIR approaches to identify whether they are interchangeable and produce similar results or replicate and substantiate the findings of this study.

References

- Aust, F., Diedenhofen, B., Ullrich, S. & Musch, J., 2013. Seriousness checks are useful to improve data validity in online research. Behavior Research Methods, 45(2), pp. 527-535.
- Bowling, N. A. et al., 2016. Who cares and who is careless? Insufficient effort responding as a reflection of respondent personality. *Journal of Personality and Social Psychology*, 111(2), pp. 218-229.
- Burton, S., Lichtenstein, D. R., Netemeyer, R. G. & Garretson, J. A., 1998. A scale for measuring attitude toward private label products and an examination of its psychological and behavioral correlates. *Journal of the Academy of Marketing Science*, 26(4), pp. 293-306.
- Cammann, C., Fichman, M., Jenkins, D. & Klesh, J. R., 1983. Assessing the attitudes and perceptions of organizational members. In: S. E. Seashore, E. E. Lawler, P. H. Mirvis & C. Cammann, eds. *Assessing organizational change: A guide to methods, measures, and practices*. New York: John Wiley, pp. 71-138.
- Campbell, D. T. & Fiske, D. W., 1959. Convergent and discriminant validation by the multitrait-multimethod matrix. *Psychological Bulletin*, 56(2), pp. 81-105.
- Chami-Castaldi, E., Reynolds, N. & Wallace, J., 2008. Individualised rating-scale procedure: A means of reducing response style contamination in survey data?. *The Electronic Journal of Business Research Methods*, 6(1), pp. 9-20.
- Cohen, J., Cohen, P., West, S. G. & Aiken, L. S., 2003. *Applied multiple regression/correlation analysis for the behavioral sciences*. 3rd ed. Mahwah(New Jersey): Lawrence Erlbaum Associates, Inc..
- Commeiras, N. & Fournier, C., 2001. Critical evaluation of Porter et al.'s Organizational Commitment Questionnaire: Implications for researchers. *The Journal of Personal Selling & Sales Management*, 21(3), pp. 239-245.
- Cote, J. A. & Buckley, M. R., 1988. Measurement error and theory testing in consumer research: An illustration of the importance of construct validation. *Journal of Consumer Research*, 14(4), pp. 579-582.
- Credé, M., 2010. Random responding as a threat to the validity of effect size estimates in correlational research. *Educational and Psychological Measurement*, 70(4), pp. 596-612.
- Curran, P. G., 2016. Methods for the detection of carelessly invalid responses in survey data. *Journal of Experimental Social Psychology*, 66(1), pp. 4-19.
- DeSimone, J. A., DeSimone, A. J., Harms, P. D. & Wood, D., 2018. The differential impacts of two forms of insufficient effort responding. *Applied Psychology: An International Review*, 67(2), pp. 309-338.
- Fuller, C. M. et al., 2016. Common method variance detection in business research. *Journal of Business Research*, 69(8), pp. 3192-3198.
- Hair Jr., J. F., Black, W. C., Babin, B. J. & Anderson, R. E., 2010. *Multivariate data analysis*. 7th ed. Upper Saddle River(NJ): Prentice Hall.
- Hauser, D. J. & Schwarz, N., 2016. Attentive turkers: MTurk participants perform better on online attention checks than do subject pool participants. *Behavior Research Methods*, 48(1), pp. 400-407.
- Hough, L. M. et al., 1990. Criterion-related validities of personality constructs and the effect of response distortion on those validities. *Journal of Applied Psychology*, 75(5), pp. 581-595.
- Huang, J. L., Bowling, N. A., Liu, M. & Li, Y., 2015a. Detecting insufficient effort responding with an infrequency scale: Evaluating validity and participant reactions. *Journal of Business and Psychology*, 30(2), pp. 299-311.
- Huang, J. L. et al., 2012. Detecting and deterring insufficient effort responding to surveys. *Journal of Business and Psychology*, 27(1), pp. 99-114.
- Huang, J. L., Liu, M. & Bowling, N. A., 2015b. Insufficient effort responding: Examining an insidious confound in survey data. *Journal of Applied Psychology*, 100(3), pp. 828-845.
- Jackson, D. N., 1977. Jackson vocational interest survey manual. Port Huron(MI): Research Psyhologists Press.
- Johnson, J. A., 2005. Ascertaining the validity of individual protocols from Web-based personality inventories. *Journal of Research in Personality*, 39(1), pp. 103-129.
- LePine, J. A., Erez, A. & Johnson, D. E., 2002. The nature and dimensionality of organizational citiznenship behavior: A critical review and meta-analysis. *Journal of Applied Psychology*, 87(1), pp. 52-65.
- Liu, M., Bowling, N. A., Huang, J. L. & Kent, T., 2013. Insufficient effort responding to surveys as a threat to validity: The perceptions and practices of SIOP members. *The Industrial-Organizational Psychologist*, 51(1), pp. 32-38.

- Lowry, R., 2018. Significance of the difference between two correlation coefficients. [Online] Available at: http://vassarstats.net/rdiff.html
- Maniaci, M. R. & Rogge, R. D., 2014. Caring about carelessness: Participant inattention and its effects on research. *Journal of Research in Personality*, Volume 48, pp. 61-83.
- McGonagle, A. A., Huang, J. L. & Walsh, B. M., 2016. Insufficient effort survey responding: An under-appreciated problem in work and organisational helath psychology research. *Applied Psychology: An International Review,* 65(2), pp. 287-321.
- Meade, A. W. & Craig, S. B., 2012. Identifying careless responses in survey data. Psychological Methods, 17(3), pp. 437-455.
- Meyer, J. P., Stanley, D. J., Herscovitch, L. & Topolnytsky, L., 2002. Affective, continuance, and normative commitment to the organization: A meta-analysis of antecedents, correlates, and consequences. *Journal of Vocational Behavior*, 61(1), pp. 20-52.
- Miller, B. & Chiodo, B., 2008, October. Academic entitlement: Adapting the equity preference questionnaire for a university setting. s.l.:Paper presented at the meeting of Southern Management Association, St. Pete Beach, FL..
- Mowday, R. T., Steers, R. M. & Porter, L. W., 1979. The measurement of organizational commitment. *Journal of Vocational Behavior*, 14(2), pp. 224-247.
- Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y. & Podsakoff, N. P., 2003. Common method biases in behavioral research: A critical review of the literature and recommended remedies. *Journal of Applied Psychology*, 88(5), pp. 879-903.
- Podsakoff, P. M., MacKenzie, S. B. & Podsakoff, N. P., 2012. Sources of method bias in social science research and recommendations on how to control it. *Annual Review Psychology*, 63(1), pp. 539-569.
- Richardson, H. A., Simmering, M. J. & Sturman, M. C., 2009. A tale of three perspectives: Examining post hoc statistical techniques for detection and correction of common method variance. *Organizational Research Methods,* 12(4), pp. 762-800.
- Schmitt, N. & Stults, D. M., 1985. Factors defined by negatively keyed items: The result of careless respondents?. *Applied Psychologial Measurement*, 9(4), pp. 367-373.
- Spector, P. E., 1987. Method variance as an artifact in self-reported affect and perceptions at work: Myth or significant problem?. *Journal of Applied Psychology*, 72(3), pp. 438-443.
- Spector, P. E., 2006. Method variance in organizational research: Truth or urban legend?. *Organizational Research Methods*, 9(2), pp. 221-232.
- Thompson, A. H., 1975. Random responding and the questionnaire measurement of psychoticism. *Social Behavior and Personality: An International Journal*, 3(2), pp. 111-115.
- Vandenberg, R. J., 2006. Statistical and methodological myths and urban legends: Where, pray tell, did they get this idea?. *Organizational Research Methods*, 9(2), pp. 194-201.
- Weathers, D. & Bardakci, A., 2015. Can response variance effectively identify careless respondents to multi-item, unidimensional scales?. *Journal of Marketing Analytics*, 3(2), pp. 96-107.
- Williams, L. J. & Anderson, S. E., 1991. Job satisfaction and organizational commitment as predictors of organizational citizenship and in-role behaviors. *Journal of Management*, 17(3), pp. 601-617.
- Wise, S. L. & Kong, X., 2005. Response time effort: A new measure of examinee motivation in computer-based tests. *Applied Measurement in Education*, 18(2), pp. 163-183.

www.ejbrm.com 10 ©ACPIL

Appendix

Analysis of Results

		Cronbach's alpha reliabilities	
	Sample sizes	Careful	Careless
Instructed Response Items	Careful=565 (83.3%) Careless=113 (16.7%)	JS: α = .94 OC: α = .93 OCB: α = .85	JS: α = .88 OC: α = .90 OCB: α = .86
Response Time	Careful=673 (99.3%) Careless=5 (0.7%)	JS: α = .93 OC: α = .93 OCB: α = .85	JS: α = .51 OC: α = .89 OCB: α = .85
Individual Reliability	Careful=449 (66.2%) Careless=229 (33.8%)	JS: α = .93 OC: α = .94 OCB: α = .86	JS: α = .94 OC: α = .90 OCB: α = .83
RIR	Careful=448 (66.1%) Careless=230 (33.9%)	JS: α = .94 OC: α = .94 OCB: α = .87	JS: α = .92 OC: α = .89 OCB: α = .81
Instructed Response Items and Individual Reliability	Careful=366 (54%) Careless=312 (46%)	JS: α = .94 OC: α = .94 OCB: α = .86	JS: α = .92 OC: α = .91 OCB: α = .84
Instructed Response Items and RIR	Careful=378 (55.8%) Careless=300 (44.2%)	JS: α = .95 OC: α = .94 OCB: α = .87	JS: α = .91 OC: α = .90 OCB: α = .82
Response Time and Individual Reliability	Careful=446 (65.8%) Careless=232 (34.2%)	JS: α = .93 OC: α = .93 OCB: α = .86	JS: α = .93 OC: α = .91 OCB: α = .84
Response Time and RIR	Careful=445 (65.6%) Careless=233 (34.4%)	JS: α = .94 OC: α = .94 OCB: α = .86	JS: α = .92 OC: α = .89 OCB: α = .82
Instructed Response Items and Response Time	Careful=563 (83%) Careless=115 (17%)	JS: α = .94 OC: α = .93 OCB: α = .84	JS: α = .88 OC: α = .91 OCB: α = .87
Instructed Response Items, Response Time, and Individual Reliability	Careful=364 (53.7%) Careless=314 (46.3%)	JS: α = .94 OC: α = .94 OCB: α = .86	JS: α = .92 OC: α = .91 OCB: α = .84
Instructed Response Items, Response Time, and RIR	Careful=376 (55.5%) Careless=302 (44.5%)	JS: α = .95 OC: α = .94 OCB: α = .86	JS: α = .91 OC: α = .90 OCB: α = .83

		Correlations	
	Full/Careful	Full/Careless	Careful/Careless
Instructed Response Items	JS-OC: .763**/.790**; z= -1.19, p < .12 JS-OCB: .326**/.316**; z= .20, p < .43 OC-OCB: .386**/.417**; z=65, p < .26	JS-OC: .763**/574*; $z = 3.40$, $p < .01$ JS-OCB: .326**/432*; $z = -1.21$, $p < .12$ OC-OCB: .386**/353*; $z = .37$, $p < .36$	JS-OC: .790"./.574"; z=4.01, p < .01 JS-OCB: .316"./.432"; z=-1.30, p < .10 OC-OCB: .417"./.353"; z=72, p < .24
Response Time	JS-OC: .763**/.764**; z=04, p < .49	JS-OC: .763**/.433; <i>z</i> = .76, <i>p</i> < .23	JS-OC: .764**/.433; z= .77, p < .23
	JS-OCB: .326**/.323**; z=06, p < .48	JS-OCB: .326**/097; <i>z</i> = .62, <i>p</i> < .27	JS-OCB: .323**/097; z= .61, p < .28
	OC-OCB: .386**/.377**; z=19, p < .43	OC-OCB: .386**/.558 <i>z</i> =31, <i>p</i> < .38	OC-OCB: .377**/.558; z=33, p < .38
Individual Reliability	JS-OC: .763**/.778**; z=61, p < .28	JS-OC: .763"'./737"; z= .77, p < .23	JS-OC: .778**/.737**; z= 1.18, p < .12
	JS-OCB: .326**/.389**; z= -1.18, p < .12	JS-OCB: .326"'./216"; z= 1.55, p < .07	JS-OCB: .389**/.216**; z= 2.34, p < .01
	OC-OCB: .386**/.432**; z=91, p < .19	OC-OCB: .386"'./295"; z= 1.34, p < .10	OC-OCB: .432**/.295**; z= 1.94, p < .03
RIR	JS-OC: .763**/.785**; z=90, p<.19	JS-OC: .763**/.715**; z= 1.38, p < .09	JS-OC: .785"./715"; z=1.97, p < .03
	JS-OCB: .326**/.373**; z=88, p<.19	JS-OCB: .326**/.218**; z= 1.52, p < .07	JS-OCB: .373"./218"; z=2.09, p < .02
	OC-OCB: .386**/.436**; z=99, p<.17	OC-OCB: .386**/.257** z= 1.88, p < .04	OC-OCB: .436"./257"; z=2.51, p < .01
Instructed Response	JS-OC: .763"*/.795"; z= -1.25, p < .11	JS-OC: .763**/.726**; z=1.21, p < .12	JS-OC: .795"./726"; z = 2.13, p < .02
Items and Individual	JS-OCB: .326"*/.392"; z= -1.16, p < .13	JS-OCB: .326**/.244**; z=1.30, p < .10	JS-OCB: .392"./244"; z = 2.13, p < .02
Reliability	OC-OCB: .386"*/.455"; z= -1.29, p < .10	OC-OCB: .386**/.302**; z=1.39, p < .09	OC-OCB: .455"/.302"; z = 2.32, p < .02
Instructed Response Items and RIR	JS-OC: .763**/.797*; z=-1.35, p < .09 JS-OCB: .326**/.366**; z=71, p < .24 OC-OCB: .386**/.448**; z=-1.17, p < .13	JS-OC: .763**/.716**; z= 1.49, p < .07 JS-OCB: .326**/.262**; z= 1.01, p < .16 OC-OCB: .386**/.293**; z= 1.51, p < .07	JS-OC: .797"./716"; z=2.46, p < .01 JS-OCB: .366"/.262"; z=1.49, p < .07 OC-OCB: .448"/.293"; z=2.32, p < .02
Response Time and Individual Reliability	JS-OC: .763**./778**; z=60, p < .28	JS-OC: .763**./734**; z= .86, p < .20	JS-OC: .778**/.734**; z= 1.26, p < .11
	JS-OCB: .326**/.386**; z= -1.12, p < .14	JS-OCB: .326**./224**; z= 1.44, p < .08	JS-OCB: .386**/.224**; z= 2.20, p < .02
	OC-OCB: .386**/.418**; z=62, p < .27	OC-OCB: .386**/.327**; z= .88, p < .19	OC-OCB: .418**/.327**; z= 1.30, p < .10
Response Time and RIR	JS-OC: .763**/.786**; z=94, p<.18	JS-OC: .763**/.712**; z= 1.47, p < .08	JS-OC: .786"'./712"; z=2.09, p < .02
	JS-OCB: .326**/.369**; z=80, p<.22	JS-OCB: .326**/.227**; z= 1.41, p < .08	JS-OCB: .369"'./227"; z=1.92, p < .03
	OC-OCB: .386**/.422**; z=70, p<.25	OC-OCB: .386**/.293**; z= 1.38, p < .09	OC-OCB: .422"'/.293"; z=1.82, p < .04
Instructed Response	JS-OC: .763**/.792*; z=-1.28, p < .11	JS-OC: .763**/.575**; z=3.41, p < .01	JS-OC: .792"/.575"; z=4.08, p < .01
Items and Response	JS-OCB: .326**/.314**; z= .23, p < .41	JS-OCB: .326**/.443**; z=-1.35, p < .09	JS-OCB: .314"/.443"; z=-1.46, p < .08
Time	OC-OCB: .386**/.407**; z=44, p < .33	OC-OCB: .386**/.417**; z=36, p < .36	OC-OCB: .407"/.417"; z=12, p < .46
Instructed Response Items, Response Time, and Individual Reliability	JS-OC: .763**/.797**; z= -1.33, p < .10 JS-OCB: .326**/.390**; z= -1.13, p < .13 OC-OCB: .386**/.441**; z= -1.02, p < .16	JS-OC: .763**/.723**; z = 1.31, p < .10 JS-OCB: .326**/.249**; z = 1.23, p < .11 OC-OCB: .386**/.325**; z = 1.02, p < .16	JS-OC: .797".723"; z=2.28, p < .02 JS-OCB: .390"./249"; z=2.04, p < .03 OC-OCB: .441"/.325"; z=1.76, p < .04
Instructed Response	JS-OC: .763**/.798**; z= -1.39, p < .09	JS-OC: .763**/.713**; z= 1.58, p < .06	JS-OC: .798":/.713"; z=2.57, p < .01
Items, Response	JS-OCB: .326**/.363**; z= -65, p < .26	JS-OCB: .326**/.267**; z= .93, p < .18	JS-OCB: .363"/.267"; z=1.37, p < .09
Time, and RIR	OC-OCB: .386**/.435**; z=91, p < .19	OC-OCB: .386**/.318**; z= 1.12, p < .14	OC-OCB: .435"/.318"; z=1.76, p < .04

Note: Significant findings are in **boldface**. *p < .05. **p < .01.

Independent samples t-tests (Careful/Careless)		
Instructed Response Items	JS: t(183)=44, p = .663 ³ OC: t(190)= -2.76, p = .006 ³ ; Cohen's d= .26 (small) OCB: t(676)= 3.83, p < .001; Cohen's d= .38 (small)	
Response Time	JS: t(676)= 1.49, p = .138 OC: t(676)= 2.38, p = .017; Cohen's d= 1.08 (large) OCB: t(676)= 4.64, p < .001; Cohen's d= 1.98 (huge)	
Individual Reliability	JS: t (676)= 2.16, p = .031; Cohen's d= .17 (very small) OC: t (676)= 1.60, p = .11 OCB: t (676)=15, p = .878	
RIR	JS: t (676)= 2.02, p = .044; Cohen's d= .16 (very small) OC: t (512)= 2.15, p = .032°; Cohen's d= .17 (very small) OCB: t (676)= 1.59, p = .113	
Instructed Response Items and Individual Reliability	JS: t (676)= 1.41, p = .159 OC: t (673)=03, p = .978 ^a OCB: t (676)= 1.83, p = .068	
Instructed Response Items and RIR	JS: t (676)= 1.32, p = .188 OC: t (668)= .49, p = .623° OCB: t (676)= 3.28, p = .001; Cohen's d= .25 (small)	
Response Time and Individual Reliability	JS: t (676)= 2.37, p = .018; Cohen's d= .19 (small) OC: t (676)= 1.99, p = .048; Cohen's d= .16 (very small) OCB: t (676)= .42, p = .675	
Response Time and RIR	JS: t (676)= 2.23, p = .026; Cohen's d= .18 (very small) OC: t (676)= 2.46, p = .014; Cohen's d= .20 (small) OCB: t (676)= 2.16, p = .031; Cohen's d= .18 (very small)	
Instructed Response Items and Response Time	JS: t (188)=27, p = .79 ^a OC: t (186)= -2.19, p = .03 ^a ; Cohen's d= .21 (small) OCB: t (151)= 4.07, p < .001 ^a ; Cohen's d= .44 (small)	
Instructed Response Items, Response Time, and Individual Reliability	JS: t (676)= 1.52, p = .128 OC: t (673)= .27, p = .787 ^a OCB: t (676)= 2.32, p = .021; Cohen's d= .18 (very small)	
Instructed Response Items, Response Time, and RIR	JS: t (676)= 1.43, p = .154 OC: t (667)= .79, p = .429 ^a OCB: t (676)= 3.77, p < .001; Cohen's d= .29 (small)	

Note: Significant findings are in boldface.

^aEqual variances not assumed.

	One-sample <i>t</i> -tests		
	Full/Careful	Full/Careless	
Instructed Response Items	JS: t(564) =15, p = .878 OC: t(564) =94, p = .35 OCB: t(564) = 1.58, p = .114	JS: t(112)= .41, p = .681 OC: t(112)= 2.64, p = .01; Cohen's d _z = .25 (small) OCB: t(112)= -3.30, p = .001; Cohen's d _z =31 (small)	
Response Time	JS: t(672)= .13, p = .899 OC: t(672)= .21, p = .838 OCB: t(672)= .40, p = .69	JS: $t(4) = -3.22$, $p = .032$; Cohen's $d_z = -1.44$ (very large) OC: $t(4) = -2.42$, $p = .073$ OCB: $t(4) = -4.18$, $p = .014$; Cohen's $d_z = -1.87$ (very large)	
Individual Reliability	JS: t (448)= 1.29, p = .198 OC: t (448)= .91, p = .361 OCB: t (448)=09, p = .929	JS: t (228)= -1.67, p = .097 OC: t (228)= -1.35, p = .18 OCB: t (228)= .13, p = .899	
RIR	JS: t (447)= 1.18, p = .24 OC: t (447)= 1.16, p = .245 OCB: t (447)= .90, p = .371	JS: t (229)= -1.63, p = .104 OC: t (229)= -1.83, p = .069 OCB: t (229)= -1.38, p = .17	
Instructed Response Items and Individual Reliability	JS: t (365)= .95, p = .341 OC: t (365)=02, p = .986 OCB: t (365)= 1.24, p = .214	JS: t (128)= -1.04, p = .298 OC: t (128)= .02, p = .983 OCB: t (128)= -1.34, p = .181	
Instructed Response Items and RIR	JS: t (377)= .86, p = .39 OC: t (377)= .31, p = .759 OCB: t (377)= 2.11, p = .036; Cohen's d _z = .11 (very small)	JS: t (299)= -1.01, p = .315 OC: t (229)=39, p = .697 OCB: t (229)= -2.56, p = .011; Cohen's d _z =15 (very small)	
Response Time and Individual Reliability	JS: t (445)= 1.43, p = .154 OC: t (445)= 1.15, p = .251 OCB: t (445)= .25, p = .804	JS: t (231)= -1.83, p = .069 OC: t (231)= -1.64, p = .102 OCB: t (231)=33, p = .74	
Response Time and RIR	JS: t (444)= 1.31, p = .191 OC: t (444)= 1.40, p = .163 OCB: t (444)= 1.25, p = .212	JS: t (232)= -1.80, p = .073 OC: t (232)= -2.13, p = .035; Cohen's d _z =14 (very small) OCB: t (232)= -1.79, p = .074	
Instructed Response Items and Response Time	JS: t (562)=10, p = .925 OC: t (562)=78, p = .433 OCB: t (562)= 1.89, p = .059	JS: t (114)= .25, p = .802 OC: t (114)= 2.06, p = .042; Cohen's d_z = .19 (small) OCB: t (114)= -3.63, p < .001; Cohen's d_z =34 (small)	
Instructed Response Items, Response Time, and Individual Reliability	JS: t (363)= 1.03, p = .303 OC: t (363)= .18, p = .86 OCB: t (363)= 1.62, p = .106	JS: t (313)= -1.12, p = .262 OC: t (313)=21, p = .837 OCB: t (313)= -1.65, p = .101	
Instructed Response Items, Response Time, and RIR	JS: t (375)= .94, p = .35 OC: t (375)= .50, p = .617 OCB: t (375)= 2.49, p = .013; Cohen's d _z = .13 (very small)	JS: t (301)= -1.09, p = .277 OC: t (301)=62, p = .536 OCB: t (301)= -2.85, p = .005; Cohen's d _z =16 (very small)	

Note: Significant findings are in boldface.

	Regressions: Chow test (Careful/Careless)
Instructed Response Items	JS-OCB: F*= 11.022, p < .001 OC-OCB: F*= 13.701, p < .001
Response Time	JS-OCB: F*= 9.77, p < .001 OC-OCB: F*= 8.226, p < .001
Individual Reliability	JS-OCB: F*= 4.045, p = .018 OC-OCB: F*= 1.727, p = .179
RIR	JS-OCB: F*= 3.333, p = .036 OC-OCB: F*= 2.79, p = .062
Instructed Response Items and Individual Reliability	JS-OCB: F*= 2.989, p = .051 OC-OCB: F*= 3.269, p = .039
Instructed Response Items and RIR	JS-OCB: F*= 5.751, p = .003 OC-OCB: F*= 7.472, p = .001
Response Time and Individual Reliability	JS-OCB: F*= 2.765, p = .064 OC-OCB: F*= .453, p = .636
Response Time and RIR	JS-OCB: F*= 3.187, p = .042 OC-OCB: F*= 1.857, p = .157
Instructed Response Items and Response Time	JS-OCB: F*= 15.021, p < .001 OC-OCB: F*= 17.535, p < .001
Instructed Response Items, Response Time, and Individual Reliability	JS-OCB: F*= 3.191, p = .042 OC-OCB: F*= 3.266, p = .039
Instructed Response Items, Response Time, and RIR	JS-OCB: F*= 6.857, p = .001 OC-OCB: F*= 7.792, p <.001

Note: Significant findings are in boldface.

	Regressions: Fit statistics	
	Full/Careful	Full/Careless
Instructed Response Items	JS-OCB: R^2 =.10; adjusted R^2 =.10; SEE=.50; β =.316** (minimal) OC-OCB: R^2 =.17; adjusted R^2 =.17; SEE=.48; β =.417** (small)	JS-OCB: R^2 =.19; adjusted R^2 =.18; SEE=.51; β =.432** (small) OC-OCB: R^2 =.13; adjusted R^2 =.12; SEE=.53; β =.353** (small)
Response Time	JS-OCB: R^2 =.11; adjusted R^2 =.10; SEE=.50; β =.323** (minimal) OC-OCB: R^2 =.14; adjusted R^2 =.14; SEE=.49; β =.377** (minimal)	JS-OCB: R^2 =.01; adjusted R^2 =32; SEE=.68; β =10 (large) OC-OCB: R^2 =.31; adjusted R^2 =.08; SEE=.56; β =.558 (large)
Individual Reliability	JS-OCB: R^2 =.15; adjusted R^2 =.15; SEE=.50; β =.389** (small) OC-OCB: R^2 =.19; adjusted R^2 = .18; SEE=.49; β =.432** (small)	JS-OCB: R^2 =.05; adjusted R^2 =.04; SEE=.52; β =.216** (small) OC-OCB: R^2 =.09; adjusted R^2 =.08; SEE=.51; β =.295** (small)
RIR	JS-OCB: R^2 =.14; adjusted R^2 =.14; SEE=.51; β =.373 ^{**} (small) OC-OCB: R^2 =.19; adjusted R^2 = .19; SEE=.50; β =.436 ^{**} (small)	JS-OCB: R^2 =.05; adjusted R^2 =.04; SEE=.49; β =.218** (small) OC-OCB: R^2 =.07; adjusted R^2 =.06; SEE=.49; β =.257** (small)
Instructed Response Items and Individual Reliability	JS-OCB: R^2 =.15; adjusted R^2 =.15; SEE=.49; β =.392** (small) OC-OCB: R^2 =.21; adjusted R^2 = .21; SEE=.48; β =.455** (small)	JS-OCB: R^2 =.06 adjusted R^2 =.06; SEE=.53; β =.244** (small) OC-OCB: R^2 =.09; adjusted R^2 =.09; SEE=.52; β =.302** (small)
Instructed Response Items and RIR	JS-OCB: R^2 =.13; adjusted R^2 =.13; SEE=.52; β =.366** (small) OC-OCB: R^2 =.20; adjusted R^2 = .20; SEE=.50; β =.448** (small)	JS-OCB: R^2 =.07; adjusted R^2 =.07; SEE=.50; β =.262** (small) OC-OCB: R^2 =.09; adjusted R^2 =.08; SEE=.49; β =.293** (small)
Response Time and Individual Reliability	JS-OCB: R^2 =.15; adjusted R^2 =.15; SEE=.49; β =.386** (small) OC-OCB: R^2 =.17; adjusted R^2 =.17; SEE=.49; β =.418** (small)	JS-OCB: R^2 =.05 adjusted R^2 =.05; SEE=.54; β =.224** (moderate) OC-OCB: R^2 =.11; adjusted R^2 =.10; SEE=.52; β =.327** (small)
Response Time and RIR	JS-OCB: R^2 =.14; adjusted R^2 =.14; SEE=.51; β =.369** (small) OC-OCB: R^2 =.18; adjusted R^2 =.18; SEE=.50; β =.422** (small)	JS-OCB: R^2 =.05; adjusted R^2 = .05; SEE=.51; β = .227** (moderate) OC-OCB: R^2 =.09; adjusted R^2 =.08; SEE=.49; β =.293*** (small)
Instructed Response Items and Response Time	JS-OCB: R^2 =.10; adjusted R^2 =.10; SEE=.49; β =.314** (minimal) OC-OCB: R^2 =.17; adjusted R^2 =.16; SEE=.474; β =.407** (small)	JS-OCB: R^2 =.20 adjusted R^2 =.19; SEE=.54; β=.443** (small) OC-OCB: R^2 =.17; adjusted R^2 =.17; SEE=.55; β=.417** (small)
Instructed Response Items, Response Time, and Individual Reliability	JS-OCB: R^2 =.15; adjusted R^2 =.15; SEE=.48; β =.39** (small) OC-OCB: R^2 =.20; adjusted R^2 =.19; SEE=.47; β =.441** (small)	JS-OCB: R^2 =.06; adjusted R^2 =.06; SEE=.54; β =.249** (small) OC-OCB: R^2 =.11; adjusted R^2 =.10; SEE=.53; β =.325** (small)
Instructed Response Items, Response Time, and RIR	JS-OCB: R^2 =.13; adjusted R^2 =.13; SEE=.50; β =.363 ^{**} (small) OC-OCB: R^2 =.19; adjusted R^2 =.19; SEE=.49; β =.435 ^{**} (small)	JS-OCB: R^2 =.07; adjusted R^2 =.07; SEE=.51; β = .267** (small) OC-OCB: R^2 =.10; adjusted R^2 =.10; SEE=.50; β =.318** (small)

Note: Significant findings are in boldface. *p < .05. **p < .01.