
Ontology Driven e-Government
Peter Salhofer, Bernd Stadlhofer and Gerald Tretter
University of Applied Sciences, Graz, Austria
peter.salhofer@fh-joanneum.at
bernd.stadlhofer@fh-joanneum.at
gerald.tretter@fh-joanneum.at

Abstract: This paper presents an approach to model ontologies for the e-Government domain as a basis for an
integrated e-Government environment. Over the last couple of years the application of semantic methodologies
and technologies in the e-Government domain has become an important field of research. A significant number
of these approaches aim at automatic service discovery and service orchestration (Lu et al. 2004) (Crichton et al.
2007) by adding and utilizing semantic annotations to web services. In contrast to these approaches it was our
idea to use semantic methodologies in a more forward-engineering manner – to create a semantic model first
and to use this model e.g. for service selection but also as basis for the automatic generation of “intelligent” web
forms. Thus the ontologies can be seen as a model that forms the basis of a Model Driven Architecture (Miller et
al. 2001) approach to e-Government. That is why we call it Ontology Driven e-Government. The principle is rather
straightforward. Every public service is semantically modeled and contains references to the required input
elements. Any constraints on the service input element – also known as preconditions – can be expressed by
semantic rules and evaluated by semantic reasoners. This allows for an automatic creation of (web) forms and
interactive plausibility checks of data gathered from the user. Instead of scattering logic over numerous functions
and procedures in all possible layers of an application, it is now consistently kept in the semantic model. Another
key advantage of this approach is that the knowledge of public services becomes available in a machine
processable form which allows for much more than just forms creation. Discovering the citizen's actual goal is
one of these use-cases and is actually a very central and important step. When developing the idea of ontology
driven e-Government it was one main idea to achieve a strong decoupling between the form solution and the
backend. Such a decoupling can be achieved by transforming the input data into a common data interchange
standard format, which was EDIAKT II (Freitter et al. 2006) – an XML Schema definition for the exchange of
electronic documents between public authorities in Austria – in our case. Following this approach the input data
can be consumed by any application supporting the data interchange standard EDIAKT II like the SOA-backend
also proposed in this paper.

Keywords: e-government, ontology, WSML/WSMO, goal orientation, form generation

1. WSMO-PA – an e-Government meta-model

Figure 1: GEA-PA service model (Wang 2007)

ISSN 1479-439X 415 ©Academic Conferences Ltd
Reference this paper as:
Salhofer, P, Stadlhofer, B. and Tretter, G. “Ontology Driven e-Government.” Electronic Journal of e-Government
Volume 7 Issue 4 2009, (pp415 - 424), available online at www.ejeg.com

mailto:peter.salhofer@fh-joanneum.at

Electronic Journal of e-Government Volume 7 Issue 4 2009 (pp415 - 424)

To ensure that all public services are modeled in a consistent way, a meta-model that acts as a
modeling guideline is needed. Therefore we chose a model proposed in the Government Enterprise
Architecture – Public Administration (GEA-PA) respectively its WSMO implementation WSMO-PA
(Wang 2007) as shown in Figure 1.GEA-PA is technology neutral. Thus it does not make any
assumption about the semantic framework or the nature of the actual implementations of public
services, hence most often they will be implemented as web services. It also models goals and needs
to link citizens (societal entities) to public administration services. This allows for goal-oriented
discovery of public services that do not necessarily have to be implemented as (semantic) web
services.

2. Goal-oriented e-government
One big advantage of semantic web services is their inherent goal orientation. They contain a
semantic description of what they do or achieve. Before a user can make use of one (or more) of
these services, the following phases have to be passed through (Leitner 2003):
 Goal discovery phase: In this phase the actual goal of the user has to be correctly formulated

using semantic notations.
 Semantic web service discovery phase: A set of semantic web services that might fulfill the goal is

retrieved.
 Service selection phase: The web service that will actually be executed is selected from the set of

retrieved services
Formulating the goal using any of the semantic methodologies can become relatively difficult. This is
due to the fact that the problem domain itself can be relatively complex and, since this process
involves user interaction, a simple and easy to use interface for expressing the goal is needed. In our
prototype implementation of ontology driven e-Government we have limited the problem domain to
the construction approval process. According to the construction law that has to be applied in this
example there are three different categories any construction might fall into:
 Building development requiring official approval: In this case you have to apply for approval which

will trigger a fairly complex process
 Notifiable building development: In this case you have to notify the responsible public agency

providing detailed information about the project. The agency can prohibit the project within six
weeks. Otherwise approval is granted

 Building development not requiring official approval: In this case you just have to inform the
responsible public agency about when construction work will start and provide some basic
information about the project.

Which of these services is needed for a given project depends on the type but also probably the size
or extent of the structure. The correct answer to this question requires some in-depth knowledge of
the construction law. To offer these services via e-Government to citizens you also have to provide
some easy to use means of identifying the required service. This is done by semantic goal and
service discovery.

3. Selecting the semantic modeling framework
There are currently several competing frameworks for modeling semantic web services submitted to
the W3C. Among them is OWL-S (Martin et al. 2005) and WSMO (Fensel et al. 2007). We
implemented evaluation prototypes based on both approaches and eventually chose WSMO which is
based on WSML (Bruijn et al. 2006) over OWL-S which is layered on top of OWL (W3C 2004). While
a detailed discussion of the differences between these two approaches can be found in (Bruijn et al.
2005) and (Polleres et al. 2004), here we will simply state the reasons for our decision.

One basic idea of our approach is its forward engineering nature. This means, that we want to start
new e-Government projects by modeling the ontology first and then using this ontology as a domain
model to form the basis of the generation of an application or service. In contrast to this, semantic
technologies are usually used to add annotations to already existing services. In our context, the
ontology can be compared to a platform independent model (PIM) as it is used in model driven
architecture (Miller et al. 2001). Since the ontology is the key element, we had to look for a modeling
approach that is simple and yet expressive and powerful enough to cover all possible aspects that
might be needed for creating a runtime environment that is based on this model.

www.ejeg.com 416 ©Academic Conferences Ltd

Peter Salhofer et al.

Table 1: A simple OWL example

Table 2: A simple WSML example

While OWL is based on XML, WSML can be seen as a domain specific language based on Meta
Object Facility (MOF) (OMG 2002). As a consequence there is no XML overhead in WSML. Table 1
and Table 2 represent the same facts. Every person has a name and parents. It is obvious that the
WSML version is easier to read, which is definitely an advantage in this case since models can be
easily created and reviewed by authors even without the use of tools.

Besides the expressive notation of WSML there exists a language variant called WSML-Flight, which
supports logic programming based on F-Logic (Kifer et al. 1995). In contrast to OWL, this approach
favors the closed world assumption, which makes the formulation of logical constraints much easier.
As you can see, another minor difference is the terminology. OWL uses the term class whereas
WSMO uses term concept for the abstraction of a thing. Both terms can be used synonymously.

4. Modeling the ontology
As mentioned above, the first services that should be supported by this new approach are
construction approval services. These services are governed by a local construction law. Thus this
law is an important source for modeling the required ontology since it contains all needed concepts
and the logical rules and requirements that form the basis of the public agency's actions. Even though
some attempts to automatically extract semantic information from laws (Biagioli et al. 2005)
(Schweighofer et al. 2001) already exist, we conducted this step manually, identifying needed
concepts and their interdependencies by carefully analyzing the text.

Other important sources, especially for modeling the attributes of identified concepts, are existing
(paper based) forms. Every input field on a form is considered to be a property of one of the concepts
involved (e.g. “family name” is a property of the person concept acting as builder in this context).

While modeling the ontology for the construction approval domain, it became clear that it is relatively
hard for non experts to even find out which one of the existing services (see Section 2) is the
appropriate one or whether any service is needed at all. This is why we have introduced goals/desires
to guide the user while selecting the appropriate service.

www.ejeg.com 417 ISSN 1479-439X

Electronic Journal of e-Government Volume 7 Issue 4 2009 (pp415 - 424)

4.1 Goal templates
Goals are elements in all frameworks that are used to describe semantic web services. Since they are
used to describe the capability of these services they typically exist at a relatively low and technical
layer (Fensel et al. 2007). In the context of this paper we use the term goal as a synonym for the
terms desire or need as they are suggested by GEA-PA (Wang et al. 2007). An abstract, yet typical
goal in the given context would be:

“I want to {build|knock down|rebuild} a {structure}!”
This goal is a typical semantic triple consisting of subject (“I”, the citizen), predicate (“build” or “knock
down” or “rebuild”) and object (“structure”). Our top-level goals reflect what citizens might want to do
or want to achieve (e.g “to build something”). This should make it easy to identify appropriate goals
that fit the needs of a particular life-situation. At this top-level, a goal typically cannot be uniquely
mapped to one single service. Therefore every goal has to be refined so that it becomes a concrete
one like

“I want to build a garage!”
However, this still does not unambiguously identify the required service since in this example the
required type of service depends on the type and number of motor vehicles that will be parked in the
garage. Thus, we would need a more specific goal like

“I want to build a garage for three cars!”
Which type of approval or service is actually needed is clearly defined in the underlying regulations.
Assuming that the applicable law is consistent – which is typically the case – this approach does not
lead to any goal conflicts since every possible case falls into exactly one category and is therefore
assigned to one particular service.

Figure 2: Part of the concept hierarchy
After analyzing the construction law, a model containing all concepts/classes was created. Since the
construction law sometimes referred to more abstract concepts (e.g. “building”) and sometimes to
more specific ones (e.g. “detached family house”), the resulting concepts formed a hierarchy (see part
of hierarchy in Figure 2). The top-level concept that could be used in the goal template is
“construction”. All other identified concepts representing more specific types of a construction are
modeled as sub-concepts resulting in a tree of concepts.

The basic idea of the goal discovery process was to start with a goal template containing the most
abstract concept (e.g. “construction” or “structure”) and assist the user in refining these concepts by
specialization until the administrative service that is needed to fulfill this goal can be unambiguously
identified. The goal discovery algorithm is explained in Section 5.

4.2 Specialization and classification
An ontology is defined as (Ehrig et al. 2004):

www.ejeg.com 418 ©Academic Conferences Ltd

Peter Salhofer et al.

A similar definition of an ontology not including datatypes can be found in (Bloehdorn et al. 2005).
The is_a relationship between two classes is defined as follows:

c1 ≤C c2 c1,c2 ∈ C ⇒ c1 is subconcept of c 2

The is_a relationship is transitive:
c1 ≤C c2 ∧ c2 ≤C c3 ⇒ c1 ≤C c3

Defining a function attr(c)

attr c(): C → A

that returns the set of attributes belonging to a given concept c the following statements also hold
true:

c1 ≤C c2 c1,c2 ∈ C ⇒ attr c2()⊆ attr c1()
This means that all sub-concepts contain all the attributes of all their super-concepts but might also
posses additional attributes. Since a concept might also have several direct super-concepts, the
following statement has to be true:

c1 ≤C c2 ∧ c1 ≤C c3 c1,c2,c3 ∈ C,
c2 ≠ c3 ∧¬ c2 ≤ c3 ∨ c3 ≤ c2()

⇒ attr c2()∪attr c3()()⊆ attr c1()

Sub-concepts are also called specializations of their super-concepts since they are more specific. In
our ontology model, however, we use two different types of sub-concepts. One is classical
specialization. For example garage is a sub-concept of building. The second type of a sub-concept is
no real specialization but more a kind of classification. As mentioned above, which type of
administrative service needs to be used when building a garage depends on the size of the garage,
which in turn is defined by law referring to the type and number of vehicles that will be parked there.
Therefore we have defined three sub-concepts called small-, medium- and big-garage. These sub-
concepts represent different classes of garages rather than more specific types of garages.
Consequently one characteristic of classification compared to specialization is that attributes of sub-
and super-concepts will be identical:

c1 ≤C c2 ⇒ attr c2()≡ attr c1()
...in the case of classification

The difference between sub- and super-concepts in the case of classification lies in the domains (i.e.
values) of some of their attributes. In WSML these differences can be modeled by axioms which are
used by the reasoner. Thus, having given any instance of the concept garage, the reasoner can infer
the correct sub-concept it belongs to by analyzing number and type of vehicles parked there.
Table 3: Axiom defining a small garage

axiom SmallGarageDefinition1
definedBy

?x memberOf SmallGarage
impliedBy

?x[forVehicleType hasValue ?vehicleType, vehicleCapacity hasValue ?capacity] memberOf Garage
and (?vehicleType memberOf vehicle#Car

and ?capacity < 3
or

?vehicleType memberOf vehicle#Motorcycle
and ?capacity < 6).

The meaning of the axiom in Table 3 is almost self-explanatory. There is some x that pretends to be a
Garage and therefore has to have some attributes. If the values of these attributes meet the
constraints of the axiom than this x becomes a SmallGarage.

5. The goal discovery algorithm
Initially based on the GEA-PA service model, we have refined and adapted parts of this model as
shown in Figure 3.

www.ejeg.com 419 ISSN 1479-439X

Electronic Journal of e-Government Volume 7 Issue 4 2009 (pp415 - 424)

Goal

Concept(s)

Sub-Concept

refers to

Public Service

Sub-ConceptSub-ConceptSub-Concept

is subconcept

fulfills

eligible for

Figure 3: Refined goal service relationship
A goal might refer to one or more concepts (e.g. “I want to build a {construction}!”). Services are
mapped to goals. There might be several services that fulfill a goal (e.g. in our construction approval
example there are three different services), however, the combination of goal and a concrete (sub-)
concept uniquely identifies the service needed. This assumption is based on the following constraints:
 Every concept that has sub-concepts is considered to be abstract.
 Every concept that has no sub-concepts (a leaf in the concept graph) is considered to be non-

abstract.
 Public services only accept instances of concrete, non-abstract concepts.

This allows for a very simple algorithm:
 Start with a goal template
 For each concept the goal template refers to, go down the concept hierarchy till a leaf is reached.
 Lookup the matching service.

a

b

c

a

b

c b'

Figure 4: Non-abstract concept b is replaced by b', b is made abstract
As shown in Figure 4, these constraints do not impose any limits on our approach. Assuming that
there is a concept b, that has sub-concepts and is not abstract (i.e. instances of this type are valid
input to services), the concept hierarchy can by remodeled by declaring b abstract and introducing a
non abstract concept b' with the following behavior:

attr b'()≡ attr b()
In this case an instance of the formerly non-abstract concept b is needed, an instance of concept b' is
used.

The entire algorithm represents the following function:

www.ejeg.com 420 ©Academic Conferences Ltd

Peter Salhofer et al.

findService g,c(): G xC[]n → C
where g is a goal and c is a possibly empty set
of concepts;

The central part of this algorithm is traversing the tree of concepts. There are two different methods to
identify the required sub-concept. In the case of real specialization, the user has to select the
appropriate sub-concept from a list as shown in Figure 5. The question always follows the same
pattern:

“You want to {build| knock down | ...} a {currentConcept}. Please further specify the type
of {currentConcept}:”

Possible answers are the sub-concepts of currentConcept. In use-cases where there are many
different concepts organized in multiple hierarchies, this approach might be perceived as being a little
onerous. Therefore, we are already considering about integrating some search facility as well.

Figure 5: Prototypic user dialog for selecting a sub-concept

Figure 6: Prototypic user interface to specify attribute values that are needed for semantic reasoning
In the case of classification, the prototype system analyses the axioms and asks for the attributes that
are evaluated to infer the correct sub-concept (see Figure 6). The sub-concept is identified by the
semantic reasoner.

6. Form generation
After identifying the appropriate service for the citizens’ goal the next step that has to be taken is to
identify the relevant input for the selected service and to transform the semantic representation of the
required information into a corresponding web form. In our prototype application the java library
wsmo4j (details see http://wsmo4j.sourceforge.net) was used to access the created ontologies. We
have used Java Server Faces (JSF) as our web technology.
Table 4: Concept representing inputs to building permit service

concept BuildingPermitApplicationRequest
nonFunctionalProperties
dc#description hasValue

"concept representing input to building permit service"
endNonFunctionalProperties

applicant ofType (1 *) personData#Person
construction ofType (1 1) Construction

delegate ofType (0 1) personData#PhysicalPerson
sitePlan ofType (1 1) segofUtil#File
floorPlan ofType (1 1) segofUtil#File

constructionViews ofType (1 1) segofUtil#File
buildingSiteEligibility ofType (0 1) segofUtil#File

www.ejeg.com 421 ISSN 1479-439X

Electronic Journal of e-Government Volume 7 Issue 4 2009 (pp415 - 424)

In table 4 a WSML concept representing relevant input to the building permit service is shown. This
concept is characterized by several properties, like applicant, construction, delegate etc, which in turn
represent WSML concepts. These properties – so called object-properties since they do not hold
simple data values but references to other concepts instead – have to be further explored by a citizen
within the generated form (see Figure 7). For each object-property in the generated form a button is
added to further specify the values of the object-property.

By clicking such a button, another form with all properties of the previously selected concept is
generated. As shown in Listing 4 an “applicant” is of type “Person”. A person is characterized by
personal data and address data. The form representation of the concept “personal data” is shown in
Figure 8. This concept doesn’t consist of object-properties but consists of so called datatype-
properties that hold simple data values like string, integer or date values.

Figure 7: Form representation, object-properties

Figure 8: Form representation, datatype-properties
After the user has filled in all required data an instance of the corresponding WSML concept (see
Table 4) is generated within the ontology and existing axioms are used to validate its correct state.

When developing the idea of ontology driven e-Government it was one main idea to achieve a strong
decoupling between the form solution and the backend. Such a decoupling can be achieved by
transforming the input data into a common data interchange standard format, which was EDIAKT II
(Freitter et al. 2006) – an XML Schema definition for the exchange of electronic documents between
public authorities in Austria – in our case. Following this approach the input data can be consumed by

www.ejeg.com 422 ©Academic Conferences Ltd

Peter Salhofer et al.

any application supporting the data interchange standard EDIAKT II like the SOA-backend described
in the next section.

7. Accessing SOA backend
In this section we propose a SOA (Service Oriented Architecture) backend for ontology driven e-
Government. Thereby it is our intention to implement a so-called grounding for each semantic web
service to a concrete web service, which is typically represented by a WSDL file. The WSMX (Web
Service Modeling eXecution environment) (Fensel et al. 2008) developed within the WSMO Project
(Fensel et al. 2007) represents one promising approach to establish groundings from a semantic web
service to a concrete web service. As both, WSMX as well as the semantic web services and
ontologies from our prototype implementation are based on WSML (Bruijn et al. 2006), the decision to
use WSMX as execution framework is obvious.

As already mentioned the concrete implementation of the web service is represented and described
by a WSDL file. Behind this service description in our case is a BPEL (Business Process Execution
Language) process – implemented with “openESB” (open Enterprise Service Bus). Since every
concept can be automatically transformed into XML-schema and each of its instances into XML based
on this schema, all data gathered from the user can be seamlessly used within BPEL processes. This
allows for very easy process composition, utilizing other already existing services like a central
register of residents to make plausibility checks of the citizens’ address data. Not only web services
but almost every single service offered by public agencies could be involved in such a BPEL process
as long as it is attached to the service bus. Thus entire – or at least major parts of – back office
business processes within the public agency involved are supported electronically from the beginning
– which is the request of the citizen – to the end – which typically is the success/failure notification
about citizens’ applications to the citizens.

8. Conclusions
The approach to using semantic technologies in e-Government presented in this paper is a first step
towards an ontology based process to implement e-Government services, where modeling the
ontology should be one of the first steps. Goal and service discovery is one important part of this type
of e-Government solutions. Using semantic reasoners to identify the concepts involved is very
powerful and can hide much of the complexity of underlying regulations from citizens. The concept
tree used in this example to guide the user in identifying the concept actually involved in her goal is a
good basis to start with.

Intelligent electronic forms – as described in section 6 – that know the current context they are
running in, greatly simplify interaction with public agencies and back office business processes.
Orchestrating all participating back office services with a tool like “openESB” – as proposed in Section
7 – would also greatly simplify the work of the particular public agency’s staff as the transparency of
the offered public service itself is tremendously increased.

One of our next goals is to further enhance the quality of the citizen’s input data to public services on
the one hand and to further increase the system’s usability on the other hand. One major step thereby
will be to shift services, which are currently located in the back office layer, to the application layer.
Preferably, it should be possible to verify an applicant’s address and personal data during form
completion, instead of in the back office. Thus, a semantic representation and integration of typical
validation services like a central register of residents has to be accomplished. Besides validation
services another type of services, so called data provider services (e.g. address list, list of states) will
be investigated to finally achieve a citizen friendly, barrier free and easy to use user interface to our
“Ontology driven E-Government” environment.

References
Bloehdorn, S., Haase, P., Sure, Y. and Voelker, J. (2005) D.6.6.1 Report on the integration ofML, HLT and OM

[online] http://www.sti-innsbruck.at/fileadmin/documents/deliverables/Sekt/sekt-d-6-6-1-
Int._ML__HLT__OM.pdf

Biagioli, C., Francesconi, E., Passerini, A., Montemagni, S., and Soria (2005) Automatic semantics extraction in
law documents, in Proceedings of the 10th international Conference on Artificial intelligence and Law, ACM,
pp 133-140

www.ejeg.com 423 ISSN 1479-439X

Electronic Journal of e-Government Volume 7 Issue 4 2009 (pp415 - 424)

www.ejeg.com 424 ©Academic Conferences Ltd

Bruijn, J.d., Lausen, H., Polleres, A. and Fensel, D. (2006) The Web Service Modeling Language WSML: An
Overview, in The Semantic Web: Research and Applications, Lecture Notes in Computer Science, vol.
4011, Springer, pp 590-604

Bruijn, J.d., Lara, R., Polleres, A. and Fensel, D. (2005) OWL DL vs. OWL Flight: Conceptual Modeling and
Reasoning for the Semantic Web, in WWW '05: Proceedings of the 14th international conference on World
Wide Web, ACM

Crichton, C., Davies, J., Gibbons, J., Harris, S. and Shukla, A. (2007) Semantic frameworks for e-government, in
ICEGOV '07: Proceedings of the 1st international conference on Theory and practice of electronic
governance, ACM, pp 30-36

Ehrig, M., Haase, P., Stojanovic, N. (2004) Similarity for ontologies - a comprehensive framework, in Workshop
Enterprise Modelling and Ontology: Ingredients for Interoperability, at PAKM 2004

Fensel, D., Lausen, H., Polleres, A., Bruijn, J.d., Stollberg, M., Roman, D. and Domingue, J (2007) Enabling
Semantic Web Services: The Web Service Modeling Ontology, in Enabling Semantic Web Services: The
Web Service Modeling Ontology, Springer, Berlin, Heidelberg, NJ

Fensel, D., Kerrigan, M. and Zaremba, M (2008) Implementing Semantic Web Services: The SESA Framework,
in Implementing Semantic Web Services: The SESA Framework, Springer, Berlin, Heidelberg

Freitter, M., Gradwohl, N. and Denner, R. (2006) Empfehlung für das XML-Schema zu EDIAKT II, V. 1.2.0
(German), [online], Bundeskanzleramt Österreich http://www.ag.bka.gv.at/index.php/Portal:Ediakt

Kifer, M., Lausen, G. and Wu, J. (1995) Logical foundations of object-oriented and frame-based languages, in
Journal of the ACM (JACM)

Leitner, C. (Ed.) (2003) eGovernment in Europe: The State of Affairs [online],
www.eipa.eu/files/repository/product/20070214113429_egoveu.pdf

Lu, L., Zhu,G. and Chen, J. (2004) An Infrastructure for E-Government Based on Semantic Web Services, in
SCC '04: Proceedings of the 2004 IEEE International Conference on Services Computing, IEEE Computer
Society, pp 483-486

Martin, D., Paolucci, M., McIlraith, S., Burstein, M., McDermott, D., McGuinness, D., Parsia, B., Payne, T.,
Sabou, M., Solanki, M., Srinivasan, N. and Sycara, K. (2005) Bringing Semantics to Web Services:The
OWL-S Approach, in Proceedings of the 1st International Workshop on Semantic Web Services and Web
Process Composition, Springer, pp 22-42

Miller, C. (Ed.), Mukerji, J. (Ed.), Burt, C., Dsouza, D., Duddy, K., El Kaim, W., Frank, W., Frankel, D., Iyengar, S.,
Miller, J., Mischkinsky, J., Mukerji, J., Siegel, J., Soley, R., Tyndal-Biscoe, S., Uhl, A., Watson, A. and
Wood, B. (2001) Model Driven Architecture (MDA), Document number ormsc/2001-07-01, Architecture
Board ORMSC, OMG

OMG (2002) Meta Object Facility (MOF) Specification [online] http://www.omg.org/docs/formal/02-04-03.pdf
Polleres, A., Lara, R. and Roman, D. (2004) D4.2v01 Formal Comparison WSMO/OWL-S [online], DERI

http://www.wsmo.org/2004/d4/d4.2/v0.1/20040315/
Schweighofer, E., Rauber, A. and Dittenbach, M. (2001) International Conference on Artificial Intelligence and

Law, in Proceedings of the 8th international conference on Artificial intelligence and law, ACM, pp 78-87
Wang, X., Vitvar, T., Peristeras, V., Mocan, A., Goudos, S. and Tarabanis, K. (2007) WSMO-PA: Formal

Specification of Public Administration Service Model on Semantic Web Service Ontology, in Proceedings of
the 40th Hawaii International Conference on System Sciences, HICSS, pp 1-10

W3C (2004) OWL Web Ontology Language Overview [online], W3C http://www.w3.org/TR/owl-features/

	1. WSMO-PA – an e-Government meta-model
	2. Goal-oriented e-government
	3. Selecting the semantic modeling framework
	4. Modeling the ontology
	4.1 Goal templates
	4.2 Specialization and classification

	5. The goal discovery algorithm
	6. Form generation
	7. Accessing SOA backend
	8. Conclusions
	References

