Exploring Media Literacy and Computational Thinking: A Game
Maker Curriculum Study

Jennifer Jenson® and Milena Droumeva’
York University, Canada

2Simon Fraser University, Vancover, Canada
jlenson@edu.yorku.ca
milenadroumeva@gmail.com

Abstract: While advances in game-based learning are already transforming educative practices globally, with tech giants
like Microsoft, Apple and Google taking notice and investing in educational game initiatives, there is a concurrent and
critically important development that focuses on ‘game construction’ pedagogy as a vehicle for enhancing computational
literacy in middle and high school students. Essentially, game construction-based curriculum takes the central question “do
children learn from playing games” to the next stage by asking “(what) can children learn from constructing games?”
Founded on Seymour Papert’s constructionist learning model, and developed over nearly two decades, there is compelling
evidence that game construction can increase student confidence and build their capacity towards ongoing computing
science involvement and other STEM subjects. Our study adds to the growing body of literature on school-based game
construction through comprehensive empirical methodology and evidence-based guidelines for curriculum design. There is
still debate as to the utility of different software tools for game construction, models of scaffolding knowledge, and
evaluation of learning outcomes and knowledge transfer. In this paper, we present a study we conducted in a classroom
environment with three groups of grade 6 students (60+ students) using Game Maker to construct their own games. Based
on a quantitative analysis and a qualitative discussion we organize results around several core themes that speak to the
field of inquiry: levels of computational literacy based on pre- and post-tests; gender-based attitutdes to computing
science and programming based on a pre- and post-survey; and the relationship between existing media literacy and
performance in programming as part of the game construction curriculum. Significant results include some gender
differences in attitudes towards computers and programming with boys demonstrating slightly higher confidence and
performance. We discuss the complex reasons potentially contributing to that, particulaly against a diverse ecology of
overal media use, gameplay experience and access to technology at home. Finally, we theorize game construction as an
educational tool that directly engages foundational literacy and numeracy, and connects to wider STEM-oriented learning
objectives in ways that can benefit both boys and girls in the classroom.

Keywords: game making, STEM, coding, Game Maker, digital literacy

1 In pursuit of “21* century skills”

An ongoing challenge of the 21% century is ensuring everyone has the requisite skills to participate in a digital,
knowledge-based economy. This is increasingly difficult under conditions of austerity in both K-12 and higher
education, at a time when there is significant need for skilled labour in technology and computing fields in
particular. Despite widespread enthusiasm for “21% century learning,” researchers and policy makers around
the globe are still trying to articulate exactly what constitutes this term (Media Awareness Network 2010),
while public education generally is being criticized for not adopting it (Francis 2012; Lynch 2013). There is, for
example, no specific curriculum provision regarding what 21% century learning should entail and how that
should inform K-12 schooling, though there is widespread and growing agreement that digital games figure
somewhere in that landscape (Gee 2005; Salen 2007; Squire 2011). Digital games are increasingly at the
forefront of conversations about ways to address student disengagement (Gee 2003; Rieber, LP 1996; Rupp et
al. 2010) and ways to foster 21% century learning and skills (Barab & Dede 2007; Steinkuehler 2008; Squire
2011). That research concentrates on playing digital games, whether those are commercially made or made
especially for education. Less prominent has been research focused on the design and development of games
as a means to support critical competencies like creative problem solving, collaboration, and programming
skills (Carbonaro et al. 2010; Denner 2011; Denner & Wenner 2007; Papert 1993). Designing and making digital
games, this prior research suggests, can provide an ideal framework for operationalizing 21% century learning:
creating digital artifacts entails technical, computational and aesthetic forms of activity whose success
depends on bridging between arts and sciences—an intersection increasingly characteristic of the
contemporary job market and effective participation in social life.

ISSN 1479-4403 111 O©ACPIL

Reference this paper as Jenson J and Droumeva M, “Exploring Media Literacy and Computational Thinking: A
Game Maker Curriculum Study” The Electronic Journal of e-Learning Volume 14 Issue 2 2016, (pp111-121)
available online at www.ejel.org

mailto:jjenson@edu.yorku.ca
mailto:milenadroumeva@gmail.com

The Electronic Journal of e-Learning Volume 14 Issue 2 2016

One of the main motivations for bringing game design and development into the fold of STEM curriculum
planning concerns the need to introduce and familiarize youth to the principles of computation, design
thinking and procedural logic, from an earlier age than is currently practised. The context for this is a growing
acknowledgement among educational researchers, computer scientists and teachers that ‘computational
thinking’ and algorithmic logic ought to be considered a kind of ‘core literacy’ that needs to be incorporated
into the school curriculum alongside numeracy, textual literacy and scientific thinking (diSessa 2000; Wing
2006). Computational thinking can also be located alongside a range of other competence-based technological
‘literacies’ discussed in popular education blogs, that include ‘making’ or tech prototyping, fostering of applied
‘creativity,” as well as ‘design thinking’. While Papert’s work in the 1980s saw the emergence of the first user-
oriented Logo coding language developed specifically with educational goals in mind, it has only been in the
last five to ten years that a plethora of drag-and-drop programming environments for children have become
readily and easily available. During that time there have been numerous improvements to the user interface
and functionality of these programs, targeting specific age groups and in many cases making tools available on
the web as part of online sharing communities of practicel. One of the most pertinent underpinnings of
contemporary education research into using game construction software in the classroom is addressing the
systemic problem of girls’ impoverished representation in computing science and technical fields. Such studies
aim to deliberately engage girls and other marginalized youth groups in coding activities, and counter negative
associations and lack of confidence that might hold them back from approaching and benefiting from ongoing
computer programming instruction. A central pedagogical concern with regard to teaching game construction
as an entry-level form of computer programming centres around defining and operationalizing “computational
thinking” as a core curricular concept, and identifying how and when to introduce it into the classroom.
Additional concerns involve what type of instruction is required and which tools are best suited to achieve
these cognitive objectives.

2 Definition and ‘cognitive objectives’ of computational thinking (CT)

Wing (2006) defines CT as “reformulating a seemingly difficult problem into one we know how to solve,
perhaps by reduction, embedding, transformation, or simulation.” Yadav et al. (2014) define CT as a “mental
activity for abstracting problems and formulating solutions that can be automated” while Cuny et al. (2010)
define it as “the thought processes involved in formulating problems and their solutions so that the solutions
are represented in a form that can be effectively carried out by an information-processing agent”. According to
Denner, Werner and Ortiz (2011), “algorithmic thinking involves defining a problem, breaking it into smaller
yet solvable parts, and identifying the steps for solving the problem.” As part of this, students must model the
essential characteristics of the problem while suppressing unnecessary details. In the process, “finite
sequences of instructions are coded to operationalize the modeled abstractions.” From a review of the field in
Grover and Pea (2013), the following is a standard list of learning objectives or computational constructs that
ought to be covered in some form in instructional designs of entry-level computing:

= Abstractions and pattern generalizations (including models and simulations)
= Systematic processing of information (proceduralization)

= Symbol systems and representations

= Structured problem decomposition (modularizing)

= |terative, recursive, and parallel thinking

= Conditional logic

= Debugging and systematic error detection (pp. 39-40)

A major challenge here is translating these constructs to both affordances of existing game development tools
and to specific instructional designs and learning objectives. A number of contemporary studies, for instance,
have published extensive breakdowns of tool-specific available actions, modifications, as well as procedural
and conditional logic sequences that correspond to top-level computational constructs (Carbonaro et al. 2010;
Denner 2011; Denner & Wenner 2007). However, less explicit are the particular pedagogical underpinnings of
instructional design by which game construction is introduced and implemented in the classroom within the
larger context of mathematics and science (STEM) instruction. Specifically, some of the concerns that need to

! Arguably two of the oldest and most widely used drag-and-drop coding environments for early school education are Scratch
https://scratch.mit.edu/ and Alice http://www.alice.org/

www.ejel.org 112 O©ACPIL

Jennifer Jenson and Milena Droumeva

addressed include the scaffolding, assessment and transfer of both computational terminology and applied
coding skills.

3 Assessment, scaffolding and transfer of conceptual skills

A standard approach in establishing the efficacy of a particular curricular program is using a pre- and post-test.
Additional study measures include implementing different scaffolding designs (e.g. written materials or direct
instruction prior to game construction activity), and exercises that specifically evaluate domain transfer and
cross-domain transfer of particular learning content or skill. Depending on the research objectives related to
computational thinking instruction (CT) different studies adopt different pre- and post-test measures. For
instance, given existing evidence that programming performance is related to confidence and attitudes to
computing science (CS), there are several instruments that specifically test (using Likert-scale questions)
confidence and attitude constructs related to CS (Hoegh & Moskal 2009; Heersink & Moskal 2010).
Additionally, Seaborn and colleagues (2012) implement a programming-specific pre/post-test that not only
evaluates domain-level knowledge related to computational terminology, but also responses to semantically
correct programming language (commands written in programming code). A large part of assessment is of
course analyzing and evaluating the game artefacts that students create in terms of complexity and the
incorporation of specific computational elements. The problem of assessing the transfer of computational
knowledge was addressed as early as 1988 (Klahr and Carver). Werner, Denner and Campe (2012) propose a
de-bugging game as a gamified form of assessment that not only looks at correct solutions, but the process of
troubleshooting and alternative approaches.

Assessment is also a function of the study design including the overall timeframe of instruction and scaffolding
activities (Lye & Koh 2014). In this sense, and given the practical difficulties of securing ‘classroom time’ as part
of regular school curricula, there is quite a lot of variation in the structure and framing, as well as choice of
programming environment, in educational research that takes up game construction as a way of teaching
computational thinking (CT). Examples of this include Carbonaro et al. (2010), who used ScriptEase, a module-
based’ drag-and-drop game construction program, for two 6-hr direct instruction workshops at University of
Alberta, in addition to 6 more hours at school for kids to finish their games. Denner, Werner and Ortiz (2011)
worked with girls in an after-school club setting for over 14 months (1-2hrs a week), designing a series of six
different genre games in Stagecast Creator, another module-based drag-and-drop environment. Seaborn et al.
(2012) adopted the structure of a ‘design camp’ utilizing Game Maker with high school teams in six modules
each lasting several months; their study measured self-efficacy, perception of helpfulness of classroom
activities, and understanding of computational concepts.

4 Teaching coding with Game Maker: A case study

This project is a research-based challenge to the now widely questioned but surprisingly persistent
presumption that students in today's classrooms are all by default 'digitally native' (Prensky 2001), and that
those ‘digitally native’ children are learning just by playing digital games (Prensky 2005). In actuality, ‘digital
nativity’ is looking markedly gendered, raced and classed (de Castell, Boschman & Jenson 2008), and the
educational use of digital games to advance 21% century learning is turning out to demand a lot more than just
playing them. Just being familiar with digital technologies and using them in one’s everyday life does not
necessarily translate into skillfully using them for learning (Livingstone, 2010). This study recognizes that in the
contemporary media landscape, familiarity with digital gameplay can represent for many young people their
entry point into acquiring the foundational digital skills demanded by a global knowledge economy. It builds on
the familiar game medium as a ‘gateway’ to study the development of critical digital literacies not through
digital game play on its own, but through a ‘production pedagogy’ in which gameplay is integrally co-engaged
with the design and development of digital games.

One of the aims of this study is to investigate the question of whether gameplay experience and general media
literacy in childrens’ lives relate to their ability to participate and benefit from game construction activities in
the classroom. This question is inextricably linked to the larger context of STEM instruction and in that sense
this study will contribute to research on game design as a ‘gateway’ to STEM. This might, moreover, be a way
to effectively re-fuse the digital divide which the survey will document and track for the duration of the
project. Finally, we set out to explore, beyond simply celebrating the introduction of game construction in the

? Typical interactions, settings and game mechanics are pre-programmed in the environment; they are selected as drag-and-drop elements
and customized to fit a game-specific situation and purpose.

www.ejel.org 113 ISSN 1479-439X

The Electronic Journal of e-Learning Volume 14 Issue 2 2016

classroom, specific instructional designs that can help and support students, not only in overcoming
confidence-related barriers to entry into computing science later in their education, but also in supporting and
supplementing their grade-specific STEM knowledge through its application in the domain of game-making.

4.1 Study Design

This study took place in a very large elementary school (with over 750 children) in Ontario, Canada. Ontario
does not currently have any mandatory computer science related curricula at the grade 6 level. We chose to
work with Grade 6 students as much of the work done previously (see Carbonaro et al. 2010; Denner 2011)
suggests that grades 6 to 7 is the time many students begin to make choices about what courses they will take
at the high school level and beyond. Because there is currently no equivalent curriculum in Ontario, we had to
negotiate classroom time with the participating principal and teachers, meaning that in this case we used time
that otherwise would have been designated for Language Arts. Our rationale for this is that we were
concentrating on learning a new piece of software that also meant students learned new vocabulary and new
concepts related to programming. In the end, we were able to negotiate working with the full grade 6
complement in the school (3 classes, 67 students), replacing their curriculum for a period of 1.5 hours over 6
consecutive days, in addition to a full day of curricular programming in a fieldtrip to a local university. In total,
the participating students had approximately 15 hours using Game Maker and of that, approximately 4-5 hours
were direct instruction. Nearly all students worked in pairs to create their games. Peer-based programming
instruction has been shown in previous studies to be positively correlated with the retention and application of
new material (Peppler & Kafai 2007). We also wanted to scaffold peer support for students so that they did not
have to rely on the researchers to answer questions and to help move their games along.

4.2 Operationalizing Computational Constructs

In order to create a usable instructional design for grade-appropriate computational literacy curriculum we
had to translate higher-level frameworks of computational thinking such as ‘decomposition,” ‘parallelism’ and
‘abstractions and pattern generalization’ constructs into operational computer science vocabulary and
operations. In particular, amidst increasing critiques of drag-and-drop game design as a form of computational
literacy instruction (Duncan, Bell & Tanimoto 2014) we wanted to depart from bottom-up ‘sandbox’
environments such as Scratch or Alice and attempt grade-appropriate instruction directly using code-window
semantic programming. Since Game Maker Studio provides both drag-and-drop and semantic coding (though,
arguably it is skewed towards coding) we landed on using this tool as one of the more versatile products that
offer low/mid-entry and high ceiling opportunities for game development. It is a tool that relates more
transparently to computational constructs and the practice of object-oriented programming, and can be
adapted for computational instruction at a variety of (upper) grade levels as well. The following table
represents our instructional framework across the specific software domain of Game Maker as they link to
higher-level computational constructs and vocabulary.

CcT Definition / Domain knowledge Game Maker syntax Computational Vocabulary
constructs examples
Variables Containers for storing values so that direction = 180; Variable, value, object, instantiation,
values can be used and modified in other = speed = 4; syntax, rate of movement, direction
parts of the program
Operations Mathematical operations with variables = score =score +1; Mathematical operations, Cartesian
or other parts of the program that cause | x=x-7; (x/y) coordinates, syntax
game state changes
Functions Built-in computational objects, instance_destroy(); Function, Boolean logic (true/false),
modifiable constructs that cause specific = move_bounce_solid(false); syntax, attributes, parameters, nested
game actions and state changes operations, placeholder
Conditionals Statements that evaluate a game state if place_meeting (x, y + 1) Boolean evaluation (if/then/else),
and cause other game actions, { conditional logic, branching and
operations, variable changes etc. to take gravity = 0.01; nesting, truth value, queries
place }
else
{
gravity = 0;
}
Table 1. Computational instruction framework
www.ejel.org 114 ©ACPIL

Jennifer Jenson and Milena Droumeva

4.3 Instructional design: scaffolding and facilitation

In previous iterations of this type of study — game design camps with grade school students — we typically
relied on heavy facilitation and one-on-one work with students or project peer groups to help students
complete a functional and polished version of their game idea (see Fisher & Jenson, Forthcoming). We still
used Game Maker, however our curriculum was based on drag-and-drop commands and the instructional
format was after-school clubs rather than classroom-based instruction. The system of instruction we used
formerly comprised of one extensive follow-along tutorial of Game Maker’s sandbox game the Brick Breaker®
followed by unstructured game design time for kids to work on their own game ideas. For this iteration of
research, particularly given that it took up valuable classroom time, we scaffolded coding instruction with a
series of direct follow-along lessons where participants learned new vocabulary and practiced applying new
programming constructs in appropriate chunks of material. The rest of each session was spent working on
their own game, adapting and modifying elements that were just covered in their own design. Key to our
curriculum design in this study was the pacing of instruction and material, and the incremental introduction of
computational concepts. First we introduced the concept and application of variables, then the role and syntax
of operations, followed by the concept and use of functions (including in-depth self-help strategies using Game
Maker’s reference guide for game programming). Finally we introduced the syntax and function of conditional
statements, all the while reinforcing previously learned vocabulary, reiterating the logic and relationship
between game events and game actions (input and output).

As part of the curriculum we built in the option for participants to look into several developed example games
and copy and adapt code from them as a kind of ‘ecological’ approach to coding instruction, given that copying
and adapting code is foundational to efficiency in programming in the workplace (Duncan, Bell & Tanimoto
2014). In this much more structured and scaffolded game construction curriculum, our vision was of research
facilitators assisting with software/interface issues (since Game Maker has a bit of a learning curve), and
helping to guide participants in design and programmatic challenges through case-by-case directed instruction,
rather than dictating or writing code for them. To enable this model of self-directed learning we enforced an
“Ask 3 before you ask Me” rule where kids had to look up a question they had in the Game Maker help, or ask
a peer, before they turned to a research facilitator.

4.4 Data Collection

Prior to the study, every participant was given a media literacy and attitudes questionnaire, as well as a pre-
test designed to evaluate their existing knowledge of computer science concepts such as variables, operations
and functions. Following the study, in order to determine what if any attitudinal changes might have occurred,
a post-test was administered that was identical to the pre-test, and a short questionnaire that repeated the
same attitudinal questions from the medial literacy and attitudes questionnaire. In addition, daily field notes
were taken by at least two researchers who were on hand for the duration of the study, that included short
video clips and photos as students worked on their games. To capture the progress that participants were
making daily as well as to gauge how much and what type of help participants were receiving from
researchers, we used Chronolapse, a software that records an image of the computer’s screen along with a
webcam image every 15 seconds. In total, we generated 256 Chronolapse videos of approximately 1.5 hrs
duration for each and recorded 36 qualitative fieldnotes of each classroom session day.

5 Results and Discussion

Given that the study and data collection are still ongoing, in this paper we report preliminary results in relation
to areas of critical discussion related to the issues raised earlier. As well, we discuss some preliminary
correlations, which are evaluated on an ongoing basis with a statistical analysis using the chi-square test of
independence for binomial variables and paired t-tests for continuous variables. Overall, the classroom-based
instructional model seemed to function well for grade 6 students working in pairs, who were able to create
playable complete games using Game Maker within the 6 classroom sessions + 1 extended university-based
field trip. Not only did students design and code their games with minimal facilitation, but their content
knowledge of basic computational terminology, as well as Game Maker domain knowledge, improved from an
average of 6.7 to an average of 9.3 (out of 16). In the following sub-sections we discuss additional preliminary
data organized around several critical areas: assumptions about pre-existing video game competence and
computer-based (and computational) knowledge; the relationship between gender, confidence, and attitudes

® http://sandbox.yoyogames.com/games/120704

www.ejel.org 115 ISSN 1479-439X

The Electronic Journal of e-Learning Volume 14 Issue 2 2016

towards computer programming instruction; and preliminary results about gender differences in computer
programming performance in the context of game construction. Finally we comment on some initial
impressions related to the study design, facilitation and classroom-based context utilized here.

Figure 1. Classroom set up and kids working on game design and game programming

5.1 Digital Know How: Surveying Media Use and Playing Games

In terms of general media use (based off the media questionnaire), we made sure to cover a wide array of
media practices and technologies that students might use: personal mobile technologies; different types of
computers; gaming devices; broadcast media; social media portals; game genres; and electronic
communication platforms. The results are as follows: boys and girls are similarly likely to use social media, and
almost everyone reported YouTube as one of their top websites/social media sites to visit at home, closely
followed by Facebook and Instagram. Girls are slightly more likely to report that they use online
communication tools such as Skype or FaceTime, as well as more likely than boys to frequent the micro-
blogging platform Tumblr (non-significant result). While most respondents reported regularly playing
videogames, boys are significantly more likely to play online multiplayer and high-end console games, and girls
a bit more likely to play puzzle or role-playing games on the Wii platform, have access to tablets, and play
mobile games. In terms of significance, a chi-square test of independence indicated that the relationship
between gender and daily game console use was significant, with boys much more likely to use gaming
consoles, X° (1, N=65) = 10.76, p < .01. Some of these gender differences in access to and use of computers and
gaming consoles likely speaks to cultural advertising that targets boys for high-end consoles such as XBOX and
PlayStation, while establishing a wider audience for ‘educational’ tools such as the Wii Series or the iPad®. Of
the participants who reported that they did not own gaming platforms or played games, the majority were
girls. These nuanced gender differences were also noted by researchers in the classroom during instruction,
with boys much more likely to raise their hand to answer questions related to gaming and computers, and girls
much more likely to volunteer answering questions about mathematics, language and other STEM content
that figured into computational concepts.

In terms of device use at home, which relates to overall media literacy and technological ease and
competence, there was only one statistically significant difference in the relationship between gender and
daily laptop use with a chi square of X° (1, N=65) = 4.53, p < .03, indicating that female students reported that
they were more likely than male students to use a laptop daily at home. This means that the majority of access
and frequency of use of everyday technologies such as broadcast media, personal devices, popular websites
and social media, are more or less equally distributed among male and female students, with the more
interesting differences being in the content consumed/interacted with: more high-end, strategy and virtual
reality-based games in the case of boys, and more versatile, casual puzzle and motion-based games in the case
of girls. Potentially related to these statistics of media and video game use (however, non-statistically
significant in this study), girls had a slightly lower average score on the computational literacy pre-test
compared to boys, and boys’ post-test scores improved significantly more than girls’ scores (see Figure 2). That
said, a more nuanced look into the data reveals that girls tended to have more consistent average scores,

* http://www.edutopia.org/blog/ipad-teaching-learning-apps-ben-johnson

www.ejel.org 116 O©ACPIL

Jennifer Jenson and Milena Droumeva

whereas boys’ competence was split between those who had very little knowledge and those who had
extensive prior experience with computing and gaming.

COMPUTATIONAL LITERACY
TEST BY GENDER

boys girls

9.60
Post-test
8.88

6.77
Pre-test
6.48

0 2 4 6 8 10 12 14 16

Figure 2. Computational literacy pre- and post-test results by gender

What is interesting here in terms of the oft-assumed relationship between an allegedly tech-savvy generation
and an aptitude for computer science, is that reported frequent gameplay activity or specific media technology
use did not correlate significantly with either a high score on the computational knowledge pre-test, or with an
overall high confidence about using computers and learning programming. A few exceptions, annecdotally, are
that playing Minecraft seemed to correlate with higher pre-test scores and overall higher confidence about
using/learning about computers; not playing games at all correlated with lower confidence about using and
learning about computers and lower pre-test scores. This context both confirms and questions some of the
game-based learning assumptions pointed out in past work — namely, that playing video games creates base
computational knowledge and confidence about technical computer skills. Our work suggests that playing
video games is one important ingredient to creating the conditions for computer programming instruction and
computational literacy, however, it can also be said that access to and encouragement to play games and use
technology is a core part of home and family socialization, bringing us back to the ‘origins’ question of gender-
based differences in technology performance.

Clearly, there is more at play here. For instance, when we look at performance on the computational
knowledge pre-test, on average, kids who had higher scores reported less confidence about their ability to
learn new computer programs, computational concepts, and troubleshoot computer programs. Conversely,
kids who displayed some of the lowest pre-test scores reported some of the highest confidence about working
with computers and being able to use and learn new computer programs. This finding is of critical pedagogical
importance because it suggests that procedural ‘content’ knowledge about mathematics and computer
programming does not necessarily translate into confidence or perceived ability to contend with
computational instruction. There are more issues here that warrant further research to better our
understanding, specifically around children using computers and engaging in gaming and social media, and if
and how these activities support “learning.”

5.2 Gender-based Attitudes to CS in Computer Programming Instruction

To develop and implement a school-wide computational literacy program based in game construction, it is
necessary to first examine and understand some of the underlying context of STEM education at the grade 6
level, as well as some of the persistent gender differences in confidence and preparedness in relation to
computer work in general. Confidence and attitudes has already been linked in numerous studies (Carbonaro
et al. 2010) to actual classroom performance and the ability to learn computer programming, as well as the
motivation to continue on this educational track. Given this, an important part of the pre-study questionnaire
was gauging self-reported confidence around using computers and learning computer programming, including
potentially ‘gendered’ attitudes towards computational knowledge in general. Results collected so far suggest
that while both sexes think the other is worse at computer programming, boys were significantly more likely to
assess girls’ computer skills as low, whereas girls had mixed evaluations of boys’ capabilities in programming.
This trend translates into self-reported attitudes and confidence with regard to computer skills in general and
one’s capacity to learn programming (see Figure 3). Girls consistently scored lower in confidence levels than
boys, and in particular, they scored significantly lower on confidence in their abilities to troubleshoot
computer programs as well as general self-confidence when it comes to computer programming (but not
computer use).

www.ejel.org 117 ISSN 1479-439X

The Electronic Journal of e-Learning Volume 14 Issue 2 2016

ATTITUDES TO COMPUTER USE
AND COMPUTER PROGRAMMING
Hgirls ®boys

o
2 b
<

Figure 3. Attitudes to computer use and computer programming by gender

I 27
I .16
" I 4.07

Some of the positive findings around attitudes to computer science were that neither girls nor boys reported
any social stigma for ‘being good with computers’, and on the whole everyone gave positive scores to the idea
of studying computer programming at school, being interested in computers, pursuing computer science
further, and having a future career that includes computer work and coding. In terms of pedagogical efficacy,
we wanted to ask students what they thought can be learned from games and from programming in the
classroom. When asked why they thought computer programming would be good to teach at school, most kids
emphasized experiential learning, trial and error, and learning about computers. Girls were significantly more
likely to list ‘collaborating with others’ and ‘learning from experience’ which might suggest both an apetite for
applied learning (especially if they are not exposed to it at home) and valuing traditionally ‘feminized’ qualities
of work such as collaboration. Most kids listed ‘making learning fun’ and ‘learning specific content’ but very
few ticked ‘learning about logic’, which might indicate a gap in terms of what students understand computer
programming instruction to be outside or inside a school setting.

Pre and Post Attitudes to CS by Gender

)
]
-
o
B
]
™
o
v I have a lot of
I feel | am confident | enio I can learn to self- lam
comfortable oy understand comfortable
X I canfix the | learning new - confidence . X
using the . computing 5 with learning
computerif it | progamson =2 |when it comes
computer at . programming computer
h stops working | the computer s to computer R
ome concep programming programming
W girls 4.27 2.09 4.18 3.66 3.16 4.06
H post-test girls 3.77 2.32 3.68 3.35 2.87 3.52
boys 4.53 3.06 4.38 4.07 4.07 4.27
H post-test boys 4.32 3.03 4.29 4.06 3.65 4.44

Figure 4. Attitudes to computer use and computer programming by gender: pre and post test

www.ejel.org 118 O©ACPIL

Jennifer Jenson and Milena Droumeva

The post-survey on attitudes to CS (Computer Science) highlights several important trends (see Figure 4). It
seems that the experience of being immersed in computer programming instruction for the duration of a week
and a half served to temper most kids’ self-reported confidence regarding both computer use and, more
specifically, programming. However, once again we observe troubling gender differences: while boys pre- and
post-attitudes hardly change, girls’ confidence is observably lower (though not universally significantly so),
except in the case where girls felt more confident with their ability to troubleshoot computer problems. This
very well may be one of the strongest indicators and prerequisites for performance in computer programming
— the confidence and knowledge to solve one’s own problems. So while boys on the average went into the
experience with that confidence, and then gained additional instrumental skills, for girls the exercise very
much served to develop this type of confidence with computer programs. Since most participants added post-
survey comments about their experience, we can also trace their reported impressions in relation to their
attitudes and confidence levels. Interestingly, both girls and boys on the whole described the experience as
‘fun’ and ‘exciting’, highlighting the opportunity to do something they’ve ‘never done before’ and learn new
skills. At the same time, both boys and girls acknowledged how challenging and difficult coding is — something
that was a bit of a surprise to them:

“When | did my own game | felt happy because | never created a game before so | felt excited. |
also find it hard like for some of the parts but it was exciting.” (Girl, aged 11)

“My experience making my own game was amazing because | learned a lot of cool things. | also
got a chance to see that computers aren't just for playing games but for making them too.” (Boy,
aged 11)

“It took so long to make something seemingly simple. It's really hard to use when you know
nothing about it (the program). So much coding goes into one action.” (Girl, aged 11)

“It is hard and not simple because there are many codes needed and memorized.” (Boy, aged 11)

This newfound awareness of the complexity of computer programming might explain an interesting result with
regard to attitudes to gender and specifically girls’ perceived ability to program code. There was a significant
difference between male and female students in their attitudes towards girls’ ability to perform well at
computer programming, t(61) = -2.50, p < .05. Girls’ opinions changed to more strongly endorse the belief that
girls could not do well at computer programming; conversely, boys’ opinions changed to more strongly
disagree with the belief that girls could not do well at computer programming. In other words, as the
guantitative data shows, while girls lost some confidence in their own abilities, boys gained respect and
appreciation for girls’ abilities, having worked alongside them and also having been mentored by skilled female
game programmers.

5.3 Study Design and Facilitation: Lessons Learned

While we have indicated in another section above that the curriculum we developed included direct
instruction for the parts that involved procedural coding using the coding “window” that is available in Game
Maker (see Figure 1, left side), we did have to spend quite a bit of time “tweaking” our curriculum while we
were developing it. In this section we will briefly detail three primary lessons we learned in this pilot study.
First, we found that it was necessary to begin each session with a piece of direct instruction that highlighted
the programming concepts we wanted students to practice in their own games. Once that direct instruction
was accomplished, we turned the rest of the time over for them to work on their own games, supported by
the researchers and a team of facilitators that were trained in Game Maker. Interestingly, we also had to
manage the facilitators’ expectations for providing help, as they sometimes provided help by directly fixing
code and/or by providing code that the students could not yet know in order to make a game work. Second,
we found that we had to do quite a lot of managing of student expectations for the games they wanted to
create; all too often they wanted to make games that exceeded their abilities and were not able to re-design
their games with their limited abilities in mind. While this is not necessarily a surprising outcome, it was
surprising to us how many participants were unfamiliar with just how much is involved in game design, and
how demanding their designs were from a programming standpoint. This points back to the lack of any formal
curriculum in Ontario with regards to computer programming, and also to the necessity for that at much
earlier grade levels. Third and finally, as much as we wanted to create an ‘open design’ experience for
participants, in hindsight the fact that we did not assign a game theme or genre, nor insisted that they
replicate the game we used to demonstrate core concepts, meant that (for some) the task was
overwhelmingly vague. For those who were overwhelmed, we often had them recreate the game that we used

www.ejel.org 119 ISSN 1479-439X

The Electronic Journal of e-Learning Volume 14 Issue 2 2016

as demonstration, which allowed all of them to proceed with the task, and some to change/hack the game in
an interesting way.

6 In conclusion

This paper presents just some of the core findings from a pilot study that made use of a free, commercially
available game design program (Game Maker), to introduce children to key computational thinking constructs
such as variables, operations, functions, and conditionals, and allow them to practice applying this new
knowledge. Overall, participants were enthusastic users of the tool, and did not struggle in the time we spent
with them (for the most part) to stay on task or stay interested in their own game development. While we
have not reported here on the affective engagement of our participants, it is in fact a highly relevant outcome
of the study, and one that we will elaborate on in future papers, as we also had an opportunity to hear from
parents of participating students who reported that their children were keen to continue working on their
games outside of classroom time. Based on our preliminary discussion of the data above, there are three
primary conclusions that are worth emphasizing. First, as others have pointed out, claims that today’s students
are defacto ‘digitally native’ is not the case for all students, nor does it indicate that students have familiarity
or even facility with basic computer programming skills and competencies. Second, there are still gender
differences in attitude and confidence with computers that in an instructional study such as this can and did
affect performance on programming related tasks, not only on the post-test, but also in our many observations
of girls during the time we spent with them. In general, girls were less willing to participate in public displays of
knowledge (like answering questions to the whole group) and were more likely than their male counterparts to
‘disavow’ their skills with speech acts, such as “l always break the computer”, and “I am not good at
computers”. We show that such differences in attidues can and do affect performance. Finally, our model of a
structured curriculum that combines applied work with direct follow-along instruction is encouraging, and we
hope eventually replicable in a school district-wide instructional programme. In conclusion, this preliminary
analysis has shown that using commericallly available game design software, that permits a variety of scalable
programming actions in the process of coding and testing a game, is not only a viable way of introducing a
middle-school demographic to computational literacy but is an effective means for fostering and supporting
STEM related competencies, vocabularies and skills.

Acknowledgements

We would like to acknowledge the Social Science and Humanities Research Council of Canada for funding this
research and thank the many student participants and their teachers. We also acknowledge the invaluable
support that our facilitators provided.

References

Barab, S, & Dede, C 2007, ‘Games and Immersive Participatory Simulations for Science Education: An Emerging Type of
Curricula’, Journal of Science Education and Technology, 16(1), 1-3. doi:10.1007/s10956-007-9043-9

Carbonaro, M, Szafron, D, Cutumisu, M, & Schaeffer, J 2010, ‘Computer-game construction: A gender-neutral attractor to
Computing Science’, Computers & Education, 55(3), 1098—1111. doi:10.1016/j.compedu.2010.05.007

De Castell, S, Boschman, L, & Jenson, J 2008 ‘In and out of control: Learning games differently’. Loading..., 2(3). Retrieved
from http://journals.sfu.ca/loading/index.php/loading/article/viewArticle/66

Denner, J & Werner, L 2007 ‘Computer Programming in Middle School: How Pairs Respond to Challenges’, Journal of
Educational Computing Research, 37(2), 131-150. d0i:10.2190/12T6-41L2-6765-G3T2

Denner, J, Werner, L & Ortiz, E 2012 ‘Computer games created by middle school girls: Can they be used to measure
understanding of computer science concepts?’ Computers & Education, 58(1), 240-249.
doi:10.1016/j.compedu.2011.08.006

diSessa, A 2000 Changing Minds: Computers, Learning, and Literacy, MIT Press.

Duncan, C, Bell, T & Tanimoto, S 2014 ‘Should Your 8-year-old Learn Coding?’ WiPSCE 2014, November05-072014, Berlin,
Germany.

Francis, D 2012, ‘It’s time to fix our broken education system’, Financial Post April 27, Retrieved October 8, 2013, from
http://opinion.financialpost.com/2012/04/27 /its-time-to-fix-our-broken-education-system/

Gee, JP 2003, What video games have to teach us about learning and literacy. Palgrave Macmillan.

Gee, J P 2005, ‘Semiotic Social Spaces and Affinity Spaces: From The Age of Mythology to Today’s Schools, in D Barton & K
Tusting (eds.), Beyond Communities of Practice: Language, Power, and Social Context , N.Y: Cambridge University
Press, Cambridge, pp. 214-232.

Heersink, D & Moskal, B 2010, ‘Measuring High School Students’ Attitudes Toward Computing’, SIGCSE 2010, March 10-13,
2010, Milwaukee, Wisconsin, USA.

Hoegh, A & B Moskal 2009, ‘Examining Science and Engineering Students’ Attitudes Toward Computer Science’, SEE/IEEE
Frontiers in Education Conference, October 18-21, 2009, San Antonio, TX.

www.ejel.org 120 O©ACPIL

Jennifer Jenson and Milena Droumeva

Jenson, J & de Castell, S 2005, ‘Her own Boss: Gender and the pursuit of incompetent play’, paper presented to Changing
Views: Worlds in Play, DIGRA, DIGRA.

Kafai, YB 2006 ‘Playing and making games for learning: Instructionist and constructionist perspectives for game studies’,
Games and Culture, vol. 1, no. 1, pp. 34-40.

Klahr, D & Carver, S 1988, ‘Cognitive Objectives in a LOGO Debugging Curriculum: Instruction, Learning and Transfer’,
Cognitive Psychology, 20, pp. 362-404.

Livingstone, S 2008, ‘Internet Literacy: Young People’s Negotiation of New Online Opportunities’, in T McPherson (ed.),
Digital Youth, Innovation, and the Unexpected, Cambridge, MA: MIT Press, pp. 101-122.

Lye, SY & Koh, JHL 2014, Review on teaching and learning of computational thinking through programming: What is next
for K-12? Computers in Human Behavior, 41, 51-61.

Lynch, K 2013, ‘Toward Canadian public education 2.0’, The Globe and Mail March 11, retrieved October 8, 2013 from
http://www.theglobeandmail.com/commentary/toward-canadian-public-education-20/article9532122/

Papert, S 1980, Mindstorms: Children, computers, and powerful ideas, Basic Books New York.

Papert, S 1993, The Children’s Machine: Rethinking School in the Age of the Computer, New York: BasicBooks.

Peppler, KA & Kafai, YB 2007, ‘From SuperGoo to Scratch: exploring creative digital media production in informal learning’,
Learning, Media and Technology, 32(2), 149-166. doi:10.1080/17439880701343337.

Prensky, M 2005, ‘Computer Games and Learning: Digital Game-Based Learning’, in J Raessens & J Goldstein (eds.),
Handbook of Computer Game Studies (pp. 97-122). Cambridge, MA: MIT Press.

Rieber, LP 1996, ‘Seriously considering play: Designing interactive learning environments based on the blending of
microworlds, simulations, and games’, Education Technology Research & Development, 44(2), 43-58.

Rupp, AA, Gushta, M, Mislevy, RJ, & Shaffer, DW 2010, ‘Evidence-centered Design of Epistemic Games: Measurement
Principles for Complex Learning Environments’, The Journal of Technology, Learning, and Assessment, 8(4), retrieved
from http://napoleon.bc.edu/ojs/index.php/jtla/article/view/1623

Salen, K 2007, ‘Gaming literacies: A game design study in action’, Journal of Educational Multimedia and Hypermedia,
16(3), pp. 301-322.

Squire, K 2011, Video Games and Learning: Teaching and Participatory Culture in the Digital Age, Technology, Education—
Connections (the TEC Series), Teachers College Press, 1234 Amsterdam Avenue, New York, NY 10027.

Steinkuehler, C 2008, ‘Cognition and literacy in massively multiplayer online games’, in J Coiro, M Knobel, C Lankshear & D)
Leu (eds.), Handbook of research on new literacies, New York: Lawrence Erlbaum Associates/Taylor & Francis Group,
pp. 611-634.

Werner, L, Denner, J, Campe, S & Kawamoto, DC 2012, ‘The Fairy Performance Assessment: Measuring Computational
Thinking in Middle School’, ACM Press, doi:10.1145/2157136.2157200, p. 215.

Wing, JM 2006, ‘Computational Thinking’, Communications of the ACM, 49(3), 33—-35.

Yadav et al. 2014 ‘Computational Thinking in Elementary and Secondary Teacher Education’, ACM Transactions on
Computing Education, vol. 14, no. 1, article 5.

www.ejel.org 121 ISSN 1479-439X

	Jennifer Jenson1 and Milena Droumeva2
	1York University, Canada
	2Simon Fraser University, Vancover, Canada
	Keywords: game making, STEM, coding, Game Maker, digital literacy
	1 In pursuit of “21st century skills”
	2 Definition and ‘cognitive objectives’ of computational thinking (CT)
	3 Assessment, scaffolding and transfer of conceptual skills
	4 Teaching coding with Game Maker: A case study
	4.1 Study Design
	4.2 Operationalizing Computational Constructs
	4.3 Instructional design: scaffolding and facilitation
	4.4 Data Collection

	5 Results and Discussion
	5.1 Digital Know How: Surveying Media Use and Playing Games
	5.2 Gender-based Attitudes to CS in Computer Programming Instruction
	5.3 Study Design and Facilitation: Lessons Learned

	6 In conclusion
	Acknowledgements
	References

