Determinants of Student Adoption of Generative AI in Higher Education

Hanadi Aldreabi¹, Nisreen Kareem Salama Dahdoul², Mohammad Alhur³, Nidal Alzboun^{4,5} and Najeh Rajeh Alsalhi⁶

¹Department of Journalism, Media, and Digital Communication, School of Arts, The University of Jordan, Amman, Jordan

H.aldreabi@ju.edu.jo n_dahdoul@asu.edu.jo mohammadsalemahmad.alhur@rai.usc.es Nal-zboun@sharjah.ac.ae nalsalhi@sharjah.ac.ae

https://doi.org/10.34190/ejel.23.1.3599

An open access article under CC Attribution 4.0

Abstract: The examination of the impact of Generative AI (GenAI) on higher education, especially from the viewpoint of students, is gaining significance. Although prior research has underscored GenAl's potential advantages in higher education, there exists a discernible research gap concerning the determinants that affect its adoption. In the present study, we aim to enhance our comprehension of the factors influencing the willingness of higher education students to adopt GenAI tools. To achieve this, we have developed an extended Unified Theory of Acceptance and Use of Technology 2 (UTAUT2) model incorporating specific GenAl constructs. Our research methodology entailed the selection of a diverse sample of 374 students through random sampling. We then analyzed their data using Structural Equation Modeling (SEM) to gain insights into the complex relationships between various variables. The study found that students are more likely to use GenAl tools when they view them as supplemental resource and effort expectancy. It also revealed that perceived costs negatively impact adoption intentions, highlighting that financial factors are a significant barrier. Interestingly, Factors like information accuracy and hedonic motivation did not significantly affect students' adoption intentions. This study offers key insights for eLearning practitioners on integrating Generative AI (GenAI) tools into educational settings. It emphasizes the significance of resource perception and effort expectancy, demonstrating GenAl's potential to personalize learning experiences. eLearning platforms can utilize GenAI to enhance active learning through engaging methods and streamline course development. Addressing cost barriers is crucial for equitable access and inclusivity. A gradual approach to integration aligned with learning objectives is recommended, along with fostering critical engagement with GenAI tools to enhance digital literacy. Lastly, the study is constrained by its specific context, potential biases in self-reported data, a narrow focus on factors influencing students' intent to use GenAl tools and a cross-sectional design. Future research should encompass a broader range of factors, employ objective measures, and integrate observational data. Longitudinal studies or experimental designs could offer more comprehensive insights into how students' perceptions and intentions develop, thus promoting a more inclusive educational environment for all students.

Keywords: Generative AI, Unified Theory of Acceptance and Use of Technology 2 (UTAUT2), Adoption technologies, Higher education

1. Study Background

In recent years, the rapid advancement of artificial intelligence (AI), particularly generative AI (GenAI), has revolutionized various fields, including education (Bahroun *et al.*, 2023). The emergence of GenAI has sparked widespread interest among students, educators, researchers, and educational institutions globally due to its significant impact on teaching and learning (Faisal Rashid, Duong-Trung and Pinkwart, 2024). GenAI represents a sophisticated technology that leverages deep learning models to generate content that closely resembles human responses to complex prompts. Its ongoing evolution is expected to drive innovation and improvements in higher education, while also presenting new challenges (Michel-Villarreal *et al.*, 2023).

ISSN 1479-4403 15 ©The Authors

²Faculty of Arts & Science, Applied Science Private University, Amman, Jordan

³Faculty of Business, Al-Zaytoonah University, Amman, Jordan

⁴School of Arts, The University of Jordan, Amman, Jordan

⁵College of Arts, Humanities, and Social Sciences, University of Sharjah, UAE

⁶Department of Education, College of Arts, Humanities, and Social Sciences, University of Sharjah, UAE

Multiple types of research have showcased the great potential of GenAl technology in education (for instance, Perera and Lankathilake, 2023; Tafazoli, 2024; Wang *et al.*, 2024). This technology can transform the conventional learning experience by offering personalized learning opportunities and adapting the educational content to cater to student's needs and abilities.

Furthermore, it promotes collaboration and peer interaction by producing contextually relevant prompts and responses, resulting in a dynamic learning environment that enhances student engagement and understanding (Chan and Zhou, 2023a).

GenAl technology can greatly improve personalized learning experiences by leveraging artificial intelligence (AI) and machine learning (ML) techniques to adapt educational activities based on student's preferences, backgrounds, and requirements (Maghsudi *et al.*, 2021; Fernandes, Rafatirad and Sayadi, 2023). By employing GenAl methods, educational platforms can accurately capture students' characteristics, recommend suitable content, develop customized curricula, and facilitate effective learner connections, ultimately enhancing performance evaluation and motivation for learning (Maghsudi *et al.*, 2021).

Additionally, the integration of AI and ML in personalized learning environments enables the continual refinement of unique profiles for individual students through learning data analytics, deep learning, and explainable AI, ensuring a more personalized and effective learning experience (Shawky and Badawi, 2019; Montebello, 2021).

GenAI technology is poised to significantly impact higher education by automating regular tasks, enhancing productivity, and creating new types of work and industries (Chan and Colloton, 2024). While students generally have a positive attitude towards GenAI in teaching and learning, recognizing its potential for personalized support and research capabilities (Chan and Hu, 2023), challenges persist. Universities exhibit significant variation in policies regarding GenAI use, with only a third having implemented specific guidelines (Xiao, Chen and Bao, 2023). Concerns include issues of academic integrity, ethical dilemmas, accuracy, privacy, and the potential transformation or obsolescence of certain jobs due to the continuous evolution of GenAI tools (Chan and Hu, 2023; Alier, García-Peñalvo and Camba, 2024).

In conclusion, effectively addressing these challenges requires a balanced approach leveraging GenAI benefits while mitigating its potential negative impacts on education and society (Arantes, 2024). This study examines factors influencing students' adoption of GenAI tools in higher education using a modified Unified Theory of Acceptance and Use of Technology 2 (UTAUT2) model. The results show that supplemental resource and effort expectancy significantly and positively impact students' intent to use GenAI tools. At the same time, information accuracy and hedonic motivation do not significantly affect students' willingness to use these tools. This research enriches the UTAUT2 model by introducing new variables and provides practical implications for academic institutions.

2. Rationale of Study

To fully leverage the potential of GenAl, it is imperative to shift our academic focus from bemoaning the challenges in education to understanding how students can effectively utilize such tools (Susarla et al., 2023). An essential aspect of this endeavor is comprehending student perceptions and intentions (Chan and Zhou, 2023). Various studies highlighted the importance of exploring student perceptions and their willingness to embrace GenAl. By dissecting the link between these perceptions and usage intentions, we can gain valuable insight into how students interact with GenAl tools and how to tailor them to better meet student needs and preferences (Ivanov *et al.*, 2024).

It is also crucial to delve into the antecedents of adoption intention and actual usage of AI-based teacher bots, including perceived ease of use, usefulness, information accuracy, interactivity, cost, and perceived intelligence (Pillai *et al.*, 2024). This comprehensive exploration sheds light on the elements contributing to student acceptance of AI technologies, which is vital for developing engaging and effective GenAI tools (Alzahrani, 2023).

Ultimately, a profound understanding of these mechanisms can aid in designing and implementing GenAI tools that enhance educational outcomes. Aligning these tools with student needs and preferences can drive more personalized, interactive, and effective learning experiences.

3. Study Problems and Aims

Recently, there has been a growing focus on the impact of GenAl in higher education. However, there is a need for a comprehensive exploration of the personal and technological factors that influence users' intentions to utilize GenAl, including hedonism, usefulness, and supplemental resource. Existing research primarily addresses concerns related to academic integrity, potentially limiting student engagement with this transformative technology. Despite students' interest, there is a lack of thorough examination of their perspectives on incorporating GenAl into learning environments (Furze *et al.*, 2024). While previous studies have underscored GenAl's potential in higher education (McDonald *et al.*, 2024), there exists a notable research gap regarding the factors influencing its adoption (Gupta and Yang, 2024).

Understanding these adoption determinants is vital for developing tailored theoretical and practical frameworks to optimize GenAl platforms in education. Given that students are primary beneficiaries, our study aims to explore the diverse factors influencing their adoption of GenAl tools. While the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2) model provides valuable insights into technology adoption, its application in educational contexts must be modified to be more suitable.

To address these gaps, our research proposes a modified UTAUT2 model that incorporates GenAI -specific characteristics. This approach aims to elucidate how elements like hedonic motivation, effort expectancy, and behavioral intention influence the adoption of GenAI tools among higher education students. Additionally, variables such as information accuracy, perceived cost, and the role of GenAI as a supplemental resource will be investigated to determine their impact on adoption behavior. By identifying reliable predictors of adoption, this study seeks to provide nuanced insights and practical recommendations for optimizing GenAI integration in higher education settings.

4. Study Questions

The current study aims to uncover the key drivers behind higher education students' adoption of Generative AI (GenAI) tools. By extending the UTAUT2 model with GenAI-specific components, we will delve into essential variables influencing adoption behaviors. Accordingly, we pose the following pivotal questions: How do specific factors of the UTAUT2 model, namely hedonic motivation, effort expectancy, and behavioral intention, influence the adoption of GenAI tools by higher education students? In addition, how do additional factors, specifically information accuracy, supplemental resource, and perceived cost, contribute to the adoption of GenAI tools by higher education students? Lastly, among these factors, which is the most dependable predictor of higher education students' adoption of GenAI tools?

5. Significance of the Study

This research is paramount for advancing the integration of GenAl tools in higher education. By examining the factors influencing students' overall experience and expanding the user base of GenAl in education, the study aims to enrich students' experience and promote wider adoption of GenAl in education. The anticipated results of this study are expected to bring substantial and far-reaching benefits for the effective implementation of GenAl in education.

The research's model offers a comprehensive understanding of the factors impacting GenAl adoption among higher education students, providing insights into how various factors collectively influence students' acceptance and use of GenAl tools. This study is instrumental in enhancing the localization and adaptation of GenAl design technology specifically for higher education students. By analyzing the factors influencing their adoption of this technology, we aim to improve the user experience and expand the current user base for GenAl tools, leading to a positive and extensive impact on the utilization of GenAl in higher education.

6. Literature Review and Theory Development

There has been a surge in the use and popularity of GenAI tools, which are being utilized in various fields, including education (Chan and Zhou, 2023a). Integrating these technologies in educational settings has transformed the learning landscape and revolutionized how students approach their studies (Mishra, Oster and Henriksen, 2024).

Recent research on the integration of GenAl in higher education suggests a generally positive reception among students (Chan and Hu, 2023). They acknowledge the benefits of personalized learning support, writing assistance, and enhanced research capabilities (Akyuz, 2020). However, concerns have been raised regarding

accuracy, privacy, ethical implications, and the potential impact on personal and societal development (Wach *et al.*, 2023). Given that student perceptions significantly influence learning approaches and outcomes; it is important to address their concerns to effectively incorporate GenAl tools in education (Chan and Hu, 2023).

Additionally, students' intention to use GenAI is influenced by information accuracy and cost, highlighting the importance of considering these factors in promoting adoption (Gupta *et al.*, 2024). Educators and students must be involved in assessment reform efforts to emphasize learning processes, critical thinking, and practical applications in the context of the evolving landscape of AI in education. (Pedro *et al.*, 2019; Alam, 2021).

However, for these technologies to be widely adopted, it is crucial to understand students' perceptions and the factors influencing their acceptance (Ivanov *et al.*, 2024). In this regard, The Unified Theory of Acceptance and Use of Technology 2 (UTAUT2) model provides a detailed framework for examining how students adopt GenAI tools. It considers factors such as effort expectancy, social influence, hedonistic motivation, and facilitating conditions. This comprehensive approach allows for a more thorough analysis of the adoption process (Gulati *et al.*, 2024).

Various academics have employed the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2) model to comprehend users' inclinations toward accepting Al-based products or technologies. Recent research has demonstrated that these aspects have a significant impact on students' attitudes towards GenAl tools (Wang and Zhang, 2023). For instance, several studies (such as Budhathoki et al., 2024; Sobaih et al., 2024; Wang & Zhang, 2023) have emphasized the significance of performance expectancy. This refers to the degree to which students believe using GenAl tools can improve their academic performance. In addition, the ease of use of these technologies, known as effort expectancy, is a significant factor in determining students' willingness to adopt GenAl tools. Social influence, habit, hedonistic motivation, and facilitating conditions are other factors that have a bearing on students' perceptions of these technologies (Nikolopoulou, Gialamas and Lavidas, 2021; Alhur *et al.*, 2022).

The UTAUT2 model is undoubtedly a valuable framework for understanding technology adoption (Faqih and Jaradat, 2021). Still, it can be challenging to apply in practice, especially in educational settings where resources are often limited (Malatji, VanEck and Zuva, 2023). Additionally, the model overlooks the role of technology characteristics, particularly GenAl, such as information accuracy, in technology adoption. Despite these limitations, modifying the model can make it more useful for education. Researchers have extended the UTAUT2 model, and these modifications show promise for understanding and implementing technology adoption in education (Tamilmani *et al.*, 2021). A recent study conducted by Wang & Zhang (2023) aimed to understand the factors that influence Generation Z's (GenZers) willingness to adopt GenAl technology. To achieve this, the study combined the UTAUT2, Technology Readiness Index (TRI) model, and trait curiosity. The study found that hedonic motivation and effort expectancy are positively correlated to using GenAl. However, no significant correlation was found between performance expectations and the willingness to use GenAl technology.

Despite the presence of these studies, there is a lack of research that thoroughly investigates how GenAl tools' positive and negative aspects can effectively predict the core elements of the UTAUT2 model, such as behavioral intention and use behavior. As a result, this article seeks to address this gap in research by extending the UTAUT 2 model to include GenAl.

One potential modification that could be made to the UTAUT2 model is to simplify the constructs and incorporate GenAl-related constructs. This way, the model can capture the essential factors influencing students' acceptance of GenAl tools, making them more accessible and practical for real-world use (Chan, 2023; Chan and Lee, 2023). By streamlining the model, educators and developers can gain valuable insights into students' perceptions of GenAl tools, which can enhance their design and implementation in educational settings (Budhathoki *et al.*, 2024; Chiu, 2024).

Educators and developers should consider the factors influencing technology adoption when creating and implementing GenAl tools. Integrating GenAl-related concepts, such as information accuracy, and viewing GenAl as a supplemental resource (Michel-Villarreal *et al.*, 2023; AlDreabi *et al.*, 2024) within the UTAUT2 model can help address gaps and improve understanding of technology adoption in educational settings.

7. Theoretical Model and Hypotheses

This study expands on previous research by combining UTAUT2 with GenAI characteristics to create a more comprehensive model for understanding technology adoption. This approach provides deeper insight into the factors influencing higher education students' willingness to use GenAI for learning. The upcoming sections will

explore these research factors and evaluate their implications for educational practice. Additionally, we will identify potential areas for future research in this rapidly evolving field.

Additionally, Figure 1 illustrates the proposed hypotheses of this research and displays six interrelated pathways. Each pathway represents a specific hypothesis, and the model summarizes each component. Overall, the diagram functions as a visual representation of the hypotheses being examined in the study.

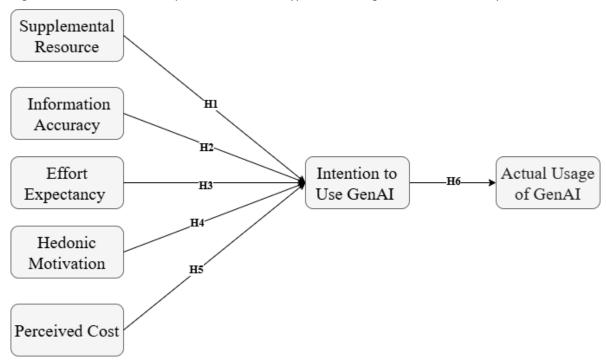


Figure 1: Study Model

8. Supplemental Resource

GenAl serves as a supplemental resource for students by utilizing algorithms to produce customized educational resources such as textbooks, eBooks, quizzes, and other creative materials (Alier, García-Peñalvo and Camba, 2024). This technology adapts content to individual learning preferences, enhancing the learning experience (Borah, T N and Gupta, 2024).

There are numerous promising opportunities for students, educators, and researchers in higher education with the use of GenAI (Chiu, 2024). With the aid of GenAI, students can improve their learning and foster critical thinking skills by receiving personalized feedback, explanations, and recommendations (Michel-Villarreal *et al.*, 2023). Research has shown that GenAI can enhance essay-writing skills and serve as a valuable tutoring tool, encouraging lively student debates and discussions (Dwivedi *et al.*, 2023). Furthermore, when used with traditional course materials, GenAI can help reinforce learning and promote independent research (Mai, Da and Hanh, 2024).

GenAl can greatly help medical teaching, particularly in resource-limited settings. GenAl tools enable students to ask queries about medical ideas and receive customized replies to aid them organize their understanding more effectively (Leng, 2024).

Additionally, GenAI tools can aid research by training students in data organization and location for papers and studies. These same tools can also provide direct feedback on diction and grammar to pupils learning a new language, facilitating their language development (Javaid *et al.*, 2023). Studies by Baidoo-Anu & Ansah (2023) Koraishi (2023), Michel-Villarreal et al. (2023) all concur that GenAI is a supplemental resource for higher education students.

Thus, H1: The perception of GenAl tools as supplemental resource (such as answering queries, generating thoughts, and conducting analyses) has a positive linear impact on higher education students' behavioral intention to use these tools.

9. Information Accuracy

The construct of information accuracy pertains to how students view the dependability and correctness of information given by AI tools (Dahri *et al.*, 2024). Students' readiness to utilize these tools is affected by their trust in the accuracy of the information. A recent study by Dahri et al. (2024) emphasizes the significance of the information accuracy concept and how it influences the usage of AI tools. In a different examination, Mizumoto & Eguchi (2023) assessed ChatGPT as an automated tool for scoring essays and discovered that it decreased grading time while ensuring consistency in scoring.

Furthermore, it furnished prompt feedback on the writing skills of students. The effectiveness and reliability of ChatGPT showcase the potential of GenAl to transform the process of teaching, leading to better academic results for college and university students. Nevertheless, it is crucial to remember that the accuracy of Al tools is not always guaranteed, and therefore, they must be used cautiously (Chan and Hu, 2023).

In a study by Ding et al. (2023), ChatGPT was used as a virtual tutor to assist in teaching undergraduate-level introductory physics. While it provided an 85% accuracy in answering questions, it occasionally changed its answers from correct to incorrect and vice versa. Students needed clarification about ChatGPT, and almost half trusted its answers regardless of their accuracy.

Thus, H2: Information accuracy has a positive linear impact on higher education students' behavioral intentions to use GenAI tools.

10. Effort Expectancy

Effort expectancy is an essential factor in deciding whether someone will use a technology. It means how easy or difficult someone thinks it will be to use a technology. If students think it will be easy to use, they will likely use it (Venkatesh *et al.*, 2003). According to UTAUT2, if technology is easy to use, people will think it requires less effort. Some recent studies have found that people are more likely to use AI services if they think they are easy to use (Wang and Zhang, 2023).

Previous inquiries have yielded helpful insights into utilizing GenAl tools in different scenarios, such as education and research, using various theoretical approaches (Ivanov *et al.*, 2024). Specifically, in education, this factor refers to the level of simplicity exhibited by technology that is perceived by students. In case students consider a system or technology to be user-friendly, they are more likely to recognize its benefits and demonstrate deliberate behavior. As a result, this influences their intention to adopt a specific technology (Budhathoki *et al.*, 2024).

Therefore, it is crucial to consider the perception of effort expectancy when introducing new technologies like GenAl in the educational setting. Students who perceive GenAl tools as simple and easy to use are likelier to engage in deliberate behavior and develop an awareness of the benefits. This, in turn, increases their willingness to adopt the technology and utilize it to its full potential.

Consistent with the research mentioned above, we suggest that: H3: effort expectancy has a positive linear impact on higher education students' behavioral intentions to use GenAl tools.

11. Hedonic Motivation

The Unified Theory of Acceptance and Use of Technology (UTAUT) model has been valuable in understanding technology adoption and use. However, it has been criticized for not accounting for the pleasure and enjoyment that comes with using technology (Budhathoki *et al.*, 2024). To address this, the Unified Theory of Acceptance and Use of Technology (UTAUT2) model was introduced in 2012, which includes hedonic motivation as a factor. As defined by Venkatesh, Thong and Xu, (2012), *hedonic motivation* pertains to the satisfaction and enjoyment individuals experience when using cutting-edge technological systems (Venkatesh, Thong and Xu, 2012). Recent studies have revealed a favorable correlation between hedonic motivation and users' inclination to embrace artificial intelligence assistants. Research has also revealed that hedonic motivation has a positive impact on the inclination to embrace and utilize mobile technology, especially for students who value enjoyable and satisfying user experiences (Al-Azawei and Alowayr, 2020).

Moreover, research has found that teachers' intention to adopt mobile Internet for course instruction is positively influenced by the joy they derive from using it (Nikolopoulou, Gialamas and Lavidas, 2021). Similarly, hedonic motivation has been found to impact the acceptance of mobile technology among secondary school

teachers and students, with perceived enjoyment significantly affecting students' intentions to accept mobile learning (Açıkgül and Şad, 2021).

Our study proposes that hedonic motivation is essential in how higher education students utilize GenAl tools. The interactive and enjoyable environment created by the conversational aspect of GenAl tools enhances the learning experience and stimulates students, ultimately enhancing their knowledge acquisition.

We propose that H4: hedonic motivation has a positive linear impact on higher education students' behavioral intentions to use GenAl tools.

12. Perceived Cost

Per the UTAUT2 model, perceived cost/price is the rational assessment of the anticipated benefits of utilizing technology for the required financial investment (Wang and Zhang, 2023). Lower costs associated with learning or adopting a new technology result in greater perceived benefits, leading to a stronger intention to use it (Al-Adwan and Al-Debei, 2024).

It is a fundamental principle in technology adoption that the perceived benefits of a technology must outweigh its associated costs, as outlined by Venkatesh, Thong and Xu (2012). Therefore, the financial investment necessary to learn or acquire new technology is a crucial factor, as highlighted by Cecilia Ka Yuk Chan and Zhou (2023). Higher perceived benefits of new technology are associated with lower learning or acquisition costs, ultimately increasing the likelihood of technology use.

In other words, investing in technology can pay off in the long run, especially if we take the time to find affordable options (Wang and Zhang, 2023). An individual's motivation and intention to use a service are significantly influenced by its cost. Students might be less likely to use GenAI if the costs are greater than the advantages for them. Research have shown that students' willingness to use educational technology can be negatively impacted by perceived barriers, such as cost (Chan and Zhou, 2023a).

Thus, H5: The perceived cost has a negative linear impact on higher education students' behavioral intentions to use GenAl tools.

13. Behavioral Intention

Over the years, researchers in information systems have delved into studying individual behavior and intentions as they relate to technology. This has resulted in the development of various acceptance models for information technology, including the Technology Acceptance Model (TAM), the Unified Theory of Acceptance and Use of Technology (UTAUT), and the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2) (Pan and Gao, 2021). The UTAUT2 framework posits that intention is a significant predictor of behavior, influenced by seven fundamental constructs. This theory emphasizes the power of intentions in shaping actions, indicating that individuals are more inclined to act when they genuinely believe their efforts will yield favorable outcomes (Silverman *et al.*, 2016)

In examining the success of information systems, researchers look at actual system usage. The user's willingness to utilize the system can then be understood as their intention to use it. According to experts in technology acceptance, behavioral intention to use directly translates to actual system usage. Most studies aimed at validating technology acceptance models have found this relationship to hold true (Mardiana, Tjakraatmadja and Aprianingsih, 2015).

In this study, "behavioral intentions" refers to students' willingness and determination to integrate GenAl tools into their learning practices. A positive attitude toward these tools indicates students' enthusiasm for incorporating Al technology into their educational endeavors. Previous research has demonstrated that a favorable disposition toward technology usage strongly correlates with its adoption (Ivanov *et al.*, 2024). Similarly, Chatterjee and Bhattacharjee (2020) examined students' behavioral intentions regarding using Al agents or chatbots. Their findings revealed that positive intentions were positively correlated with increased usage of such tools. Consequently, we hypothesize that H6, *the intention to use GenAl has a positive linear impact on higher education students' use of GenAl tools*.

14. Methodology

The study utilized a quantitative cross-sectional approach to explore the utilization of GenAI tools by higher education students in Jordanian public universities during the academic year 2023/2024. It specifically targeted students from three prominent governmental universities: The University of Jordan (1631 students), Jordan

University of Science and Technology (JUST) (1214 students), and Al-Balqa Applied University (350 students). Follow random sampling, a total of 374 students participated in a survey conducted via Google Forms between December 10, 2023, and February 5, 2024, with the support of the student affairs deanships of the universities.

The framework of this study was evaluated using Structural Equation Modeling (SEM), a powerful technique designed for analyzing intricate models with multiple variables and their interconnections (Hair *et al.*, 2021). SEM allows for the simultaneous exploration of both direct and indirect relationships among constructs, deepening our insight into how various factors within the study's model influence the adoption of Generative AI tools (Masud *et al.*, 2024). This methodological approach perfectly aligns with the study's aim to investigate behavioral intention and adoption behavior among students, as SEM effectively integrates measurement and structural components, enhancing the reliability and robustness of the findings.

The questionnaire, initially developed in English and later translated into Arabic, consisted of 23 items that assessed various aspects of the research model, including four demographic questions, incorporating demographic variables such as gender and frequency of GenAI tool usage, essential for interpreting the study's findings. Gender influences technology adoption behaviors, and understanding how often students use GenAI, including whether they opt for free or paid versions, provides insights into access and familiarity in adoption intentions (Table (1). We adapted a previously validated questionnaire from earlier studies, as outlined in Appendix 1. All the scales used in our study have been validated and shown reliability in studies by Chan and Lee (2023), Venkatesh, Thong and Xu (2012), and Dahri et al. (2024).

The survey investigated the elements of the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2), initially designed to analyze technology acceptance in consumer contexts. This framework has been refined to integrate characteristics specific to Generative AI (GenAI), highlighting key aspects such as hedonic motivation, effort expectancy, and behavioral intention. Additionally, it considers crucial factors like information accuracy, perceived costs, and the perception of GenAI as a valuable supplemental resource. This enhanced UTAUT2 framework is particularly suited for higher education environments, where varying motivations and perceived utility influence individual attitudes toward technology. Consequently, it provides a robust theoretical foundation for comprehending the adoption of GenAI tools in educational settings.

Prior to analysis, the data underwent thorough scrutiny for any missing information or anomalies. The sample size was deemed suitable for SEM methodology (Kyriazos, 2018), and an exploratory factor analysis was conducted to effectively consolidate the dimensions linked with each construct.

15. Sample Characteristics

In Table 1, an analysis of the demographic data from the sample is presented, including gender, age, frequency of GenAl tools usage, and whether participants used the paid version of GenAl tools. The sample included 374 students, 52.7% female and 47.3% male. The majority of participants 43.3% fell within the age range of 18-30 years, followed by 31-41 years 31.8%, and ≥42 years 24.9%. In terms of GenAl tools usage, 12% reported using it only once, 23% used it 2-3 times, and 65% used it three times or more. As for whether participants used the paid version of GenAl tools, 56.7% reported using the free version, while 43.3% used the paid version.

Table 1: Sample characteristics

Demographic Data	Categories	Count	Percentage %
Gender	Female	197	52.7%
	Male	177	47.3%
	Total	374	100%
Age	18-30 years	162	43.3%
	31-41 years	119	31.8%
	42 yrs. and over	93	24.9%
	Total	374	100%
How often do you use	Once times or less	45	12.0%
GenAl tools?	2-3 times in week	86	23.0%
	More than 3 times	243	65.0%
	Total	374	100%

Demographic Data	Categories	Count	Percentage %
Do you use the paid version	No	212	56.7%
of GenAl tools?	Yes	162	43.3%
	Total	374	100%

16. Results

The study's data underwent rigorous analysis using IBM SPSS 27 and IBM AMOS 28. As per Hair et al.'s (2019) two-step approach, the researchers conducted confirmatory factor analysis (CFA) to evaluate the measurement model's reliability, validity, and fitness indices. In the second step, they employed robust structural equation modeling (SEM) to examine all hypotheses and comprehensively understand the study's findings.

17. The Study's Reliability and Validity

This study presents a novel measurement model for assessing students' adoption of GenAl tools in higher education. Drawing on the Unified Theory of Acceptance and Use of Technology (UTAUT) model and GenAl literature, the model was formulated based on the Hair 2019 guidelines. Measurement theory was employed to determine how the latent variables (constructs) are measured, wherein the reflective measurement approach was used due to its suitability for the current context. This approach can effectively capture the nature and nuances of the constructs and provide more reliable and accurate results (Hair et al., 2021).

The model used in this study was rigorously fitted with data, yielding strong fit indices. Specifically, the findings revealed a chi-square value of χ^2 (180) = 565.552, a chi-square to degrees of freedom ratio of χ^2 /df = 3.142, a Comparative Fit Index (CFI) of 0.924, a Standardized Root Mean Square Residual (SRMR) of 0.051, and a Root Mean Square Error of Approximation (RMSEA) of 0.076, with a P value exceeding 0.05 (Crawford and Kelder, 2019). To further establish the validity and reliability of the instruments employed, Tables 2 and 3 present findings demonstrating a Cronbach's alpha value greater than 0.70, alongside factor loadings that surpass the recommended threshold of 0.50 (Hair et al., 2021). Additionally, the Average Variance Extracted (AVE) was greater than 0.50 (Kline, 2011), as detailed in Table 3.

Table 2: CFA and descriptive statistics

Items	Factor Loadings*	α*	M(SD)*	Skewness*	Kurtosis*
SR1	.939	0.937	3.70(.967)	179	631
SR3	.917				
SR2	.898				
IA1	.935	0.925	3.03(.947)	077	559
IA3	.840				
IA4	.863				
IA2	.853				
НМЗ	.923	0.859	3.31(.917)	178	698
HM2	.864				
HM1	.692				
Int.3	.911	0.851	4.01(.946)	093	666
Int.2	.835				
Int.1	.693				
PC2	.752	0.795	3.38(.879)	.147	.516
PC1	.786				
PC3	.738				
AU2	.832	0.797	3.86(.903)	134	481
AU1	.715				
AU3	.721				
EE3	.745	0.745	3.94(.917)	100	450

Items	Factor Loadings*	α*	M(SD)*	Skewness*	Kurtosis*
EE2	.745				
EE1	.625				

Note: SR: Supplemental resource, IA: Information accuracy, HM: Hedonic motivation, Int.: Intention to use GenAl tools, PC: Perceived cost, AU: Actual usage of GenAl tools, EE: Effort expectancy. α = Cronbach's Alpha coefficient; M(SD)= Mean & Standard deviation. * These values fall within the thresholds established by Kline (2011) and Hair *et al.* (2019, 2021a)

Examining both convergent and discriminant validity indicated that the research instrument exhibited adequate convergent validity (Hair et al., 2021). Furthermore, Tables 3 and 4 confirm that the measurement items possess sufficient discriminant validity, with Composite Reliability (CR) values going beyond the AVE values (Kline, 2011). The AVE values also exceeded the Average Shared Variance (ASV) and Maximum Shared Variance (MSV) values. At the same time, the correlations among the independent variables remained below the threshold of 0.70 (Almén *et al.*, 2018).

Table 3: Study model's validity

Factors	CR	AVE	MSV	MaxR(H)	SR	IA	НМ	Int.	PC	AU	EE
SR	0.941	0.843	0.158	0.944	0.918						
IA	0.928	0.763	0.195	0.937	0.397	0.874					
НМ	0.869	0.692	0.165	0.906	0.186	0.348	0.832				
Int.	0.857	0.669	0.114	0.890	0.154	0.160	0.175	0.818			
PC	0.803	0.576	0.196	0.805	0.133	-0.442	0.329	-0.300	0.759		
AU	0.801	0.574	0.114	0.814	0.160	0.250	0.159	0.338	0.247	0.758	
EE	0.749	0.501	0.196	0.758	0.170	0.370	0.406	0.201	0.443	0.204	0.707

Note: SR: SR: Supplemental resource, IA: Information accuracy, HM: Hedonic motivation, Int.: Intention to use GenAl tools, PC: Perceived cost, AU: Actual usage of GenAl tools, EE: Effort expectancy; Composite Reliability = (CR) > 0.70, Average Variance Extracted = AVE > 0.50, Maximum Shared Variance = AVE > MSV and McDonald Construct Reliability = MaxR(H) > 0.7. The square root of the AVE is displayed as diagonal boldface values. These values fall within the thresholds established by Kline (2011), Hair *et al.* (2019) and Almén *et al.* (2018)

Table 4: HTMT Analysis

Factors	SR	IA	НМ	Int.	PC	AU	EE
SR							
IA	0.404						
НМ	0.253	0.362					
Int.	0.167	0.178	0.202				
PC	0.138	0.471	0.364	0.313			
AU	0.159	0.267	0.188	0.358	0.273		
EE	0.178	0.354	0.455	0.212	0.468	0.210	

Note: SR: SR: Supplemental resource, IA: Information accuracy, HM: Hedonic motivation, Int.: Intention to use GenAI tools, PC: Perceived cost, AU: Actual usage of GenAI tools, EE: Effort expectancy. These values fall within the thresholds established by Almén et al. (2018)

18. Structural Model

The study utilized Structural Equation Modeling (SEM) to investigate the factors that affect students' intention to use Generative AI (GenAI) tools. The structural model was developed in accordance with the guidelines established by Hair et al. (2021). The findings indicated that the model displayed a satisfactory fit, as assessed against the criteria set forth by Crawford & Kelder (2019): χ^2 (185) = 597.590, χ^2 /df = 3.230, CFI = 0.939, SRMR = 0.052, and RMSEA = 0.073, with a p-value exceeding 0.05.

Figure 2 illustrates the finalized structural model, depicting the relationships among several key predictors—including supplemental resource, information accuracy, effort expectancy, hedonic motivation, and perceived cost—along with the intention to use GenAl tools and the actual usage of these tools. Each pathway is annotated with its standardized regression weight (β) and statistical significance level. Significant relationships are marked with solid arrows (*p < 0.05), while dashed arrows indicate non-significant relationships.

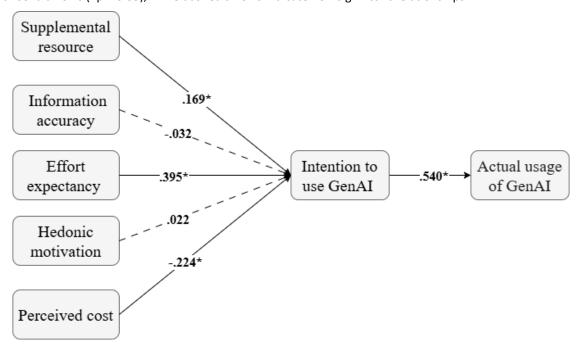


Figure 2: Structural Model, * P<0.05.

The results, as presented in Table 5, show that supplemental resource (β = 0.169, p < 0.01), effort expectancy (β = 0.395, p < 0.001), and perceived cost (β = -0.224, p < 0.05) significantly influence students' intention to use GenAl tools, thereby supporting hypotheses H1, H4, and H5. Additionally, the intention to use GenAl tools is a strong predictor of actual usage (β = 0.54, p < 0.001), supporting hypothesis H6.

In contrast, the factors of information accuracy (β = -0.032, p > 0.05) and hedonic motivation (β = 0.022, p > 0.05) do not have a significant impact on students' intention, failing to support hypotheses H2 and H3. Overall, the model accounts for 39% of the variance in students' intention to use GenAl tools and 29% of the variance in their actual usage.

Table 5: Hypotheses testing

Hypothesis	Predictors	Outcomes	S.E.*	t-value	Beta
H1	Supplemental resource	Intention to use GenAl tools	.062	2.867	.169**
H2	Information accuracy	Intention to use GenAl tools	.075	0.417	032
Н3	Hedonic motivation	Intention to use GenAl tools	.062	0.340	.022
H4	Perceived cost	Intention to use GenAl tools	.114	2.572	.224*
H5	Effort expectancy	Intention to use GenAl tools	.093	4.651	.395***
H6	Intention to use GenAl tools	Actual usage of GenAl tools	.050	9.863	.540***

Note: S.E. = Standard Error, * P<0.05, **P<0.01, *** P<0.001

19. Discussion

This research utilized an adapted version of the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2) model to examine the factors influencing students' adoption of generative AI (GenAI) tools. The analysis highlighted several key factors: perceived cost, effort expectancy, hedonic motivation, supplemental resource, and information accuracy.

The findings in Table 5 indicate that students are significantly more inclined to use GenAl tools when they view them as offering valuable supplemental resource, being cost-effective, and being easy to use. Furthermore, Figure 2 illustrates the relationships among these factors and their influence on students' behavioral intentions to adopt GenAl tools in higher education.

The results reveal that effort expectancy and behavioral intention significantly influence students' adoption of Generative AI (GenAI). Conversely, the hedonistic value has little effect on students' willingness to embrace Generative AI. These findings align with previous research conducted by Ivanov *et al.* (2024), McDonald *et al.* (2024), which also emphasized the significance of usability and the availability of supportive resources in technology adoption.

Moreover, the results show that intention behavior has a robust and significant effect on willingness to embrace Generative AI. This finding aligns with previous research (Venkatesh, 2022; Li, 2024; Lu *et al.*, 2024), reinforcing the notion that intention is a critical determinant in technology adoption

The recent shift in focus highlights the importance of educational institutions prioritizing the creation of user-friendly tools that seamlessly fit into students' academic workflows. These institutions must invest in training and support resources that improve students' experiences, enabling them to utilize these tools effectively and navigate their academic tasks with minimal challenges.

The research also highlights vital factors influencing the adoption of Generative AI (GenAI) tools, mainly focusing on information accuracy, supplemental resource, and perceived cost. Findings indicate that students are more likely to use GenAI tools when they view them as cost-effective and offering valuable resources. This aligns with studies by Michel-Villarreal *et al.* (2023) and Wang and Zhang (2023) on the importance of considering GenAI as a supplemental resource for technology adoption in education.

While information accuracy is relevant, students prioritize perceived cost and availability of supportive resources (Chan and Zhou, 2023a). This change in priorities suggests that initiatives to promote GenAl adoption in higher education should place less emphasis on refining precision or enhancing the hedonic value of these tools and more on ensuring they are accessible, user-friendly, and accompanied by robust resources (Hmoud *et al.*, 2023; Li, 2024).

Among the various factors influencing the adoption of Generative AI (GenAI) tools by higher education students, effort expectancy and the availability of supplemental resource have emerged as the most reliable predictors. The findings suggest that students are more inclined to adopt GenAI tools when they view them as user-friendly and recognize the presence of supporting resources, such as tailored examples and information that cater to their learning needs. This observation aligns with existing literature on technology adoption in educational settings, underscoring the importance of accessibility and support structures for effective technology integration (Ivanov *et al.*, 2024; Meakin, 2024).

The focus on effort expectancy indicates that institutions should prioritize making GenAl tools intuitive and easy to use. Students who find these tools straightforward to navigate are more likely to engage with them consistently. Furthermore, the availability of supplemental resource is vital in promoting sustained use. Students benefit significantly from resources that enhance their understanding and application of GenAl tools, which can influence their learning outcomes (Granić, 2022).

20. Study Contributions About Extending the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2) Model

The UTAUT2 framework is expanded in this study to incorporate new factors specific to GenAl technologies in higher education. These additional factors, such as supplemental resource and effort expectancy, are vital for understanding students' intentions to adopt GenAl tools, even though they are not explicitly covered in the original UTAUT2 model.

The study utilizes the UTAUT2 model to analyze the adoption of GenAl tools in higher education, shedding light on how existing UTAUT2 variables, like effort expectancy, interact with new GenAl-specific variables, such as supplemental resource.

Furthermore, the research confirms the relevance of existing UTAUT2 variables, like perceived cost and effort expectancy, in the context of GenAl tools, signifying their continued significance in technology adoption.

Moreover, the research outlines practical implications for educational institutions, underscoring the importance of providing comprehensive resources and ensuring the affordability and usability of GenAI tools to facilitate their integration into higher education environments.z

In conclusion, this study enhances the UTAUT2 model by introducing new variables, validating existing ones, critiquing less influential factors, and providing practical insights for implementation in higher education settings.

21. Study Implications

This study aims to explore the factors influencing the utilization of GenAl tools in education, building upon previous studies in this field. Prior research mainly concentrated on identifying the essential variables impacting the use of these tools in various situations. However, this study takes a more comprehensive approach by considering multiple essential elements, such as accuracy of information, supplemental resource, and perceived cost. It seeks to establish a structural model that assesses the most significant factors affecting the adoption of GenAl tools among undergraduate and postgraduate students.

The study also contributes to existing knowledge by extending the UTAUT2 framework to demonstrate the main factors promoting the implementation of GenAl technologies, like Genmini, in higher education institutions. This expansion is important as it highlights the necessity for educational institutions to take various factors into account when making decisions about integrating GenAl tools. By doing so, educational institutions can ensure that the tools are effectively used, enabling their students to benefit from utilizing them in their studies and education.

In contrast, the study's findings present two key practical implications. Firstly, to ensure the effective use of GenAl tools, educational institutions, and developers should prioritize making them more cost-effective, user-friendly, and resourceful. This can be achieved by offering additional resources and support to students, improving the usability of the tools, and ensuring that they are perceived as valuable supplements to traditional learning methods. By addressing these factors, institutions can increase students' willingness to use GenAl tools, promoting their adoption and integration into educational environments.

Secondly, the study highlights the importance of a comprehensive approach to technology adoption in educational settings. While accuracy of information and hedonic motivation are important, they may not be the sole drivers of students' willingness to use GenAl tools. Therefore, institutions should focus on understanding their student's specific needs and preferences, taking into account factors such as perceived ease of use and cost in addition to accuracy and hedonism. By considering the broader context of technology adoption, institutions can develop more effective strategies to encourage the use of GenAl tools among students, ultimately facilitating their integration into the learning process.

22. Limitations

It is important to note that this study has limitations due to its specific context (higher education), potential biases in self-reported data, a narrow focus on factors influencing students' intent to use GenAl tools, and a cross-sectional design, which limits establishing causal or temporal relationships between variables.

23. Conclusion and Further Research

This study investigates the factors that influence the adoption of Generative AI (GenAI) tools among higher education students by utilizing a modified version of the UTAUT2 model. It examines perceived cost, effort expectancy, hedonic motivation, supplemental resource, and information accuracy. The findings indicate that ease of use and the availability of support resources are critical drivers for students' adoption of GenAI tools. This suggests that the adoption of educational technology is primarily influenced by practical utility and accessibility rather than simply by enjoyment or high accuracy.

The research identifies that supplemental resource and effort expectancy are the strongest predictors of students' intentions to use GenAl tools. This highlights that students tend to favor tools that are user-friendly and come with resources that enhance the learning experience. Conversely, information accuracy and hedonic motivation play a lesser role in adoption, indicating a shift in students' perceptions of what is essential in educational technology. These findings enrich the UTAUT2 model by incorporating context-sensitive variables and provide practical insights for educational institutions looking to implement GenAl tools effectively. By addressing these key factors, institutions can foster environments encouraging GenAl adoption and better supporting the learning process.

For future research, it is recommended that studies broaden their focus to explore additional variables and employ a range of methodologies. Incorporating objective measures and observational data could help alleviate the limitations often associated with self-reported findings. Furthermore, conducting longitudinal or experimental studies could yield deeper insights into how students' perceptions and intentions regarding GenAl tools evolve over time. These approaches would foster a more inclusive and comprehensive understanding of effective integrations of GenAl tools, inspiring the audience with the potential for further exploration and ultimately contributing to a more supportive educational environment for various student populations.

Ethics Statement: Participants in the study were thoroughly informed about its nature, purpose, and potential outcomes. Data collection was conducted anonymously, ensuring that no personally identifiable information was gathered or retained. (Ethics approval is not required for our research, and we did not use an Al tool)

Al statement: While preparing this work, the authors utilized Grammarly to enhance readability and language. After using this tool, they carefully reviewed and edited the content as necessary and took full responsibility for the final published article.

References

- Açıkgül, K. and Şad, S.N. (2021) 'High school students' acceptance and use of mobile technology in learning mathematics', *Education and Information Technologies*, 26(4), pp. 4181–4201. https://doi.org/10.1007/s10639-021-10466-7.
- Akyuz, Y. (2020) 'Effects of Intelligent Tutoring Systems (ITS) on Personalized Learning (PL)', *Creative Education*, 11(06), pp. 953–978. https://doi.org/10.4236/ce.2020.116069.
- Al-Adwan, A.S. and Al-Debei, M.M. (2024) 'The determinants of Gen Z's metaverse adoption decisions in higher education: Integrating UTAUT2 with personal innovativeness in IT', *Education and Information Technologies*, 29(6), pp. 7413–7445. https://doi.org/10.1007/s10639-023-12080-1.
- Al-Azawei, A. and Alowayr, A. (2020) 'Predicting the intention to use and hedonic motivation for mobile learning: A comparative study in two Middle Eastern countries', *Technology in Society*, 62, pp. 101325. https://doi.org/10.1016/j.techsoc.2020.101325.
- Alam, A. (2021) 'Possibilities and Apprehensions in the Landscape of Artificial Intelligence in Education', in 2021 International Conference on Computational Intelligence and Computing Applications (ICCICA). IEEE, pp. 1–8. https://doi.org/10.1109/ICCICA52458.2021.9697272.
- AlDreabi, H., Twahya, F.K.A. Al, Alzboun, N., Anabtawi, M., Ghaboush, R.A., Alhur, M. and Alshurideh, M.T. (2024) 'The role of digital communication in developing administrative work in higher education institutions', *International Journal of Data and Network Science*, 8(2), pp. 1261–1274. https://doi.org/10.5267/j.ijdns.2023.11.008.
- Alhur, M.S., Alshamari, S., Oláh, J. and Aldreabi, H. (2022) 'Unsupervised Machine Learning to Identify Positive and Negative Themes in Jordanian mHealth Apps', *International Journal of E-Services and Mobile Applications*, 14(1), pp. 1–21. https://doi.org/10.4018/IJESMA.313950.
- Alier, M., García-Peñalvo, F.-J. and Camba, J.D. (2024) 'Generative Artificial Intelligence in Education: From Deceptive to Disruptive', *International Journal of Interactive Multimedia and Artificial Intelligence*, 8(5), pp. 5. https://doi.org/10.9781/ijimai.2024.02.011.
- Almén, N., Lundberg, H., Sundin, Ö. and Jansson, B. (2018) 'The reliability and factorial validity of the Swedish version of the Recovery Experience Questionnaire', *Nordic Psychology*, 70(4), pp. 324–333. https://doi.org/10.1080/19012276.2018.1443280.
- Alzahrani, L. (2023) 'Analyzing Students' Attitudes and Behavior Toward Artificial Intelligence Technologies in Higher Education', *International Journal of Recent Technology and Engineering (IJRTE)*, 11(6), pp. 65–73. https://doi.org/10.35940/ijrte.F7475.0311623.
- Arantes, J.A. (2024) 'Redefining Classroom Readiness: How Initial Teacher Training Can Mitigate Risks and Capitalize on the Potential of GenAl', in *Academic Integrity in the Age of Artificial Intelligence*. IGI Global, pp. 78–92. https://doi.org/10.4018/979-8-3693-0240-8.ch005.
- Bahroun, Z., Anane, C., Ahmed, V. and Zacca, A. (2023) 'Transforming Education: A Comprehensive Review of Generative Artificial Intelligence in Educational Settings through Bibliometric and Content Analysis', *Sustainability*, 15(17), pp. 12983. https://doi.org/10.3390/su151712983.
- Baidoo-Anu, D. and Owusu Ansah, L. (2023) 'Education in the Era of Generative Artificial Intelligence (AI): Understanding the Potential Benefits of ChatGPT in Promoting Teaching and Learning', *Journal of AI*, 7(1), pp. 52–62. https://doi.org/10.61969/jai.1337500.
- Borah, A.R., T N, N. and Gupta, S. (2024) 'Improved Learning Based on GenAl', in *2024 2nd International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT)*. IEEE, pp. 1527–1532. https://doi.org/10.1109/IDCIoT59759.2024.10467943.
- Budhathoki, T., Zirar, A., Njoya, E.T. and Timsina, A. (2024) 'ChatGPT adoption and anxiety: a cross-country analysis utilising the unified theory of acceptance and use of technology (UTAUT)', *Studies in Higher Education*, pp. 1–16. https://doi.org/10.1080/03075079.2024.2333937.
- Chan, C.K.Y. (2023) 'A comprehensive AI policy education framework for university teaching and learning', *International Journal of Educational Technology in Higher Education*, 20(1). pp.20. https://doi.org/10.1186/s41239-023-00408-3.

- Chan, C.K.Y. and Colloton, T. (2024) *Generative AI in Higher Education*. London: Routledge. https://doi.org/10.4324/9781003459026.
- Chan, C.K.Y. and Hu, W.J. (2023) 'Students' voices on generative AI: perceptions, benefits, and challenges in higher education', *International Journal of Educational Technology in Higher Education*, 20(1). https://doi.org/10.1186/s41239-023-00411-8.
- Chan, C.K.Y. and Lee, K.K.W. (2023) 'The AI generation gap: Are Gen Z students more interested in adopting generative AI such as ChatGPT in teaching and learning than their Gen X and millennial generation teachers?', Smart Learning Environments, 10(1). https://doi.org/10.1186/s40561-023-00269-3.
- Chan, C.K.Y. and Zhou, W. (2023a) 'An expectancy value theory (EVT) based instrument for measuring student perceptions of generative AI', *Smart Learning Environments*, 10(1), pp. 64. https://doi.org/10.1186/s40561-023-00284-4.
- Chan, C.K.Y. and Zhou, W. (2023b) 'Deconstructing Student Perceptions of Generative AI (GenAI) through an Expectancy Value Theory (EVT)-based Instrument', *Computers and Society* [Preprint]. https://doi.org/10.48550/arXiv.2305.01186.
- Chatterjee, S. and Bhattacharjee, K.K. (2020) 'Adoption of artificial intelligence in higher education: a quantitative analysis using structural equation modelling', *Education and Information Technologies*, 25(5), pp. 3443–3463. https://doi.org/10.1007/s10639-020-10159-7.
- Chiu, T.K.F. (2024) 'Future research recommendations for transforming higher education with generative Al', *Computers and Education: Artificial Intelligence*, 6, pp.100197. https://doi.org/10.1016/j.caeai.2023.100197.
- Crawford, J.A. and Kelder, J.-A. (2019) 'Do we measure leadership effectively? Articulating and evaluating scale development psychometrics for best practice', *The Leadership Quarterly*, 30(1), pp. 133–144. https://doi.org/10.1016/j.leaqua.2018.07.001.
- Dahri, N.A., Yahaya, N., Al-Rahmi, W.M., Vighio, M.S., Alblehai, F., Soomro, R.B. and Shutaleva, A. (2024) 'Investigating Albased academic support acceptance and its impact on students' performance in Malaysian and Pakistani higher education institutions', *Education and Information Technologies* [Preprint]. https://doi.org/10.1007/s10639-024-12599-x.
- Ding, L., Li, T., Jiang, S.Y. and Gapud, A. (2023) 'Students' perceptions of using ChatGPT in a physics class as a virtual tutor', International Journal of Educational Technology in Higher Education, 20(1). https://doi.org/10.1186/s41239-023-00434-1.
- Dwivedi, Y.K., Kshetri, N., Hughes, L., Slade, E.L., Jeyaraj, A., Kar, A.K., Baabdullah, A.M., Koohang, A., Raghavan, V., Ahuja, M., Albanna, H., Albashrawi, M.A., Al-Busaidi, A.S., Balakrishnan, J., Barlette, Y., Basu, S., Bose, I., Brooks, L., Buhalis, D., Carter, L., Chowdhury, S., Crick, T., Cunningham, S.W., Davies, G.H., Davison, R.M., Dé, R., Dennehy, D., Duan, Y., Dubey, R., Dwivedi, R., Edwards, J.S., Flavián, C., Gauld, R., Grover, V., Hu, M.-C., Janssen, M., Jones, P., Junglas, I., Khorana, S., Kraus, S., Larsen, K.R., Latreille, P., Laumer, S., Malik, F.T., Mardani, A., Mariani, M., Mithas, S., Mogaji, E., Nord, J.H., O'Connor, S., Okumus, F., Pagani, M., Pandey, N., Papagiannidis, S., Pappas, I.O., Pathak, N., Pries-Heje, J., Raman, R., Rana, N.P., Rehm, S.-V., Ribeiro-Navarrete, S., Richter, A., Rowe, F., Sarker, S., Stahl, B.C., Tiwari, M.K., van der Aalst, W., Venkatesh, V., Viglia, G., Wade, M., Walton, P., Wirtz, J. and Wright, R. (2023) 'Opinion Paper: "So what if ChatGPT wrote it?" Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy', *International Journal of Information Management*, 71, pp. 102642. https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2023.102642.
- Faisal Rashid, S., Duong-Trung, N. and Pinkwart, N. (2024) 'Generative AI in Education: Technical Foundations, Applications, and Challenges', in *Artificial Intelligence for Quality Education [Working Title]*. IntechOpen, pp. 1–20. https://doi.org/10.5772/intechopen.1005402.
- Faqih, K.M.S. and Jaradat, M.-I.R.M. (2021) 'Integrating TTF and UTAUT2 theories to investigate the adoption of augmented reality technology in education: Perspective from a developing country', *Technology in Society*, 67, pp.101787. https://doi.org/10.1016/j.techsoc.2021.101787.
- Fernandes, C.W., Rafatirad, S. and Sayadi, H. (2023) 'Advancing Personalized and Adaptive Learning Experience in Education with Artificial Intelligence', in 2023 32nd Annual Conference of the European Association for Education in Electrical and Information Engineering (EAEEIE). IEEE, pp. 1–6. https://doi.org/10.23919/EAEEIE55804.2023.10181336.
- Furze, L., Perkins, M., Roe, J. and MacVaugh, J. (2024) 'The AI Assessment Scale (AIAS) in action: A pilot implementation of GenAI supported assessment', arXiv preprint arXiv:2403.14692 [Preprint]. http://arxiv.org/abs/2403.14692.
- Granić, A. (2022) 'Educational Technology Adoption: A systematic review', *Education and Information Technologies*, 27(7), pp. 9725–9744. https://doi.org/10.1007/s10639-022-10951-7.
- Gulati, A., Saini, H., Singh, S. and Kumar, V. (2024) 'Enhancing learning potential: investigating marketing students' behavioral intentions to adopt chatgpt', *Marketing Education Review*, pp. 1–34. https://doi.org/10.1080/10528008.2023.2300139.
- Gupta, R., Nair, K., Mishra, M., Ibrahim, B. and Bhardwaj, S. (2024) 'Adoption and impacts of generative artificial intelligence: Theoretical underpinnings and research agenda', *International Journal of Information Management Data Insights*, 4(1), pp. 100232. https://doi.org/10.1016/j.jijimei.2024.100232.
- Gupta, V. and Yang, H. (2024) 'Study protocol for factors influencing the adoption of ChatGPT technology by startups: Perceptions and attitudes of entrepreneurs', *PLOS ONE*. Edited by A. Haldorai, 19(2), pp. e0298427. https://doi.org/10.1371/journal.pone.0298427.

- Hair, J.F., Black, W.C., Babin, B.J. and Anderson, R.E. (2019) *Multivariate Data Analysis*. 8th, illustr edn. Edited by P. Prentice. England: Cengage.
 - https://books.google.es/books/about/Multivariate Data Analysis.html?id=0R9ZswEACAAJ&redir esc=y.
- Hair, J.F., Hult, G.T.M., Ringle, C.M., Sarstedt, M., Danks, N.P. and Ray, S. (2021a) 'An Introduction to Structural Equation Modeling', in *Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R. Classroom Companion: Business.*, *Cham*, pp. 1–29. https://doi.org/10.1007/978-3-030-80519-7_1.
- Hair, J.F., Hult, G.T.M., Ringle, C.M., Sarstedt, M., Danks, N.P. and Ray, S. (2021b) 'An Introduction to Structural Equation Modeling BT Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R: A Workbook', in J.F. Hair Jr., G.T.M. Hult, C.M. Ringle, M. Sarstedt, N.P. Danks, and S. Ray (eds). Cham: Springer International Publishing, pp. 1–29. https://doi.org/10.1007/978-3-030-80519-7
- Hmoud, H., Al-Adwan, A.S., Horani, O., Yaseen, H. and Zoubi, J.Z. Al (2023) 'Factors influencing business intelligence adoption by higher education institutions', *Journal of Open Innovation: Technology, Market, and Complexity*, 9(3), pp. 100111. https://doi.org/10.1016/j.joitmc.2023.100111.
- Ivanov, S., Soliman, M., Tuomi, A., Alkathiri, N.A. and Al-Alawi, A.N. (2024) 'Drivers of generative Al adoption in higher education through the lens of the Theory of Planned Behaviour', *Technology in Society*, 77, p. 102521. https://doi.org/10.1016/j.techsoc.2024.102521.
- Javaid, M., Haleem, A., Singh, R.P., Khan, S. and Khan, I.H. (2023) 'Unlocking the opportunities through ChatGPT Tool towards ameliorating the education system', *BenchCouncil Transactions on Benchmarks, Standards and Evaluations*, 3(2), pp. 100115. https://doi.org/https://doi.org/https://doi.org/10.1016/j.tbench.2023.100115.
- Kline, R. (2011) Principles and practice of structural equation modeling, 3rd edn, Guilford Press, New York.
- Koraishi, O. (2023) 'Teaching English in the age of Al: Embracing ChatGPT to optimize EFL materials and assessment', Language Education and Technology, 3(1), 55-72.
- Kyriazos, T.A. (2018) 'Applied Psychometrics: Sample Size and Sample Power Considerations in Factor Analysis (EFA, CFA) and SEM in General', *Psychology*, 09(08), pp. 2207–2230. https://doi.org/10.4236/psych.2018.98126.
- Leng, L. (2024) 'Challenge, integration, and change: ChatGPT and future anatomical education.', *Medical education online*, 29(1), pp. 2304973. https://doi.org/10.1080/10872981.2024.2304973.
- Li, W. (2024) 'A Study on Factors Influencing Designers' Behavioral Intention in Using Al-Generated Content for Assisted Design: Perceived Anxiety, Perceived Risk, and UTAUT', *International Journal of Human–Computer Interaction*, pp. 1–14. https://doi.org/10.1080/10447318.2024.2310354.
- Lu, H., He, L., Yu, H., Pan, T. and Fu, K. (2024) 'A Study on Teachers' Willingness to Use Generative AI Technology and Its Influencing Factors: Based on an Integrated Model', *Sustainability*, 16(16), pp. 7216. https://doi.org/10.3390/su16167216.
- Maghsudi, S., Lan, A., Xu, J. and van der Schaar, M. (2021) 'Personalized Education in the Artificial Intelligence Era: What to Expect Next', *IEEE Signal Processing Magazine*, 38(3), pp. 37–50. https://doi.org/10.1109/MSP.2021.3055032.
- Mai, D.T.T., Da, C. Van and Hanh, N. Van (2024) 'The use of ChatGPT in teaching and learning: a systematic review through SWOT analysis approach', *Frontiers in Education*, 9. https://doi.org/10.3389/feduc.2024.1328769.
- Malatji, W.R., VanEck, R. and Zuva, T. (2023) 'A Review of Theories Utilized in Understanding Online Information Privacy Perceptions', in *Computer Science On-line Conference*. Springer, pp. 54–67. https://doi.org/10.1007/978-3-031-35311-6 7.
- Mardiana, S., Tjakraatmadja, J. and Aprianingsih, A. (2015) 'Validating the Conceptual Model for Predicting Intention to Use as Part of Information System Success Model: The Case of an Indonesian Government Agency', *Procedia Computer Science*, 72, pp. 353–360. https://doi.org/10.1016/j.procs.2015.12.150.
- Masud, A. Al, Ahmed, S., Kaisar, M.T., Hossain, B., Shimu, M. and Islam, M.F. (2024) 'Unveiling brand loyalty in emerging markets: Analyzing smartphone user preferences: Robustness of structural equation modeling (SEM) and simultaneous equation modeling (SEMs)', *Journal of Open Innovation: Technology, Market, and Complexity*, 10(3), pp. 100353. https://doi.org/10.1016/j.joitmc.2024.100353.
- McDonald, N., Johri, A., Ali, A. and Hingle, A. (2024) 'Generative Artificial Intelligence in Higher Education: Evidence from an Analysis of Institutional Policies and Guidelines', arXiv preprint arXiv:2402.01659 [Preprint]. http://arxiv.org/abs/2402.01659.
- Meakin, L. (2024) 'Exploring the Impact of Generative Artificial Intelligence on Higher Education Students' Utilization of Library Resources', Information Technology and Libraries, 43(3). https://doi.org/10.5860/ital.v43i3.17246.
- Michel-Villarreal, R., Vilalta-Perdomo, E., Salinas-Navarro, D.E., Thierry-Aguilera, R. and Gerardou, F.S. (2023) 'Challenges and Opportunities of Generative AI for Higher Education as Explained by ChatGPT', *EDUCATION SCIENCES*, 13(9). https://doi.org/10.3390/educsci13090856.
- Mishra, P., Oster, N. and Henriksen, D. (2024) 'Generative AI, Teacher Knowledge and Educational Research: Bridging Short- and Long-Term Perspectives', *TechTrends*, 68(2), pp. 205–210. https://doi.org/10.1007/s11528-024-00938-1.
- Mizumoto, A. and Eguchi, M. (2023) 'Exploring the potential of using an Al language model for automated essay scoring', Research Methods in Applied Linguistics, 2(2), p. 100050. https://doi.org/https://doi.org/10.1016/j.rmal.2023.100050.
- Montebello, M. (2021) 'Personalized Learning Environments', in 2021 International Symposium on Educational Technology (ISET). IEEE, pp. 134–138. https://doi.org/10.1109/ISET52350.2021.00036.

- Nikolopoulou, K., Gialamas, V. and Lavidas, K. (2021) 'Habit, hedonic motivation, performance expectancy and technological pedagogical knowledge affect teachers' intention to use mobile internet', *Computers and Education Open*, 2, pp. 100041. https://doi.org/https://doi.org/https://doi.org/10.1016/j.caeo.2021.100041.
- Pan, M. and Gao, W. (2021) 'Determinants of the behavioral intention to use a mobile nursing application by nurses in China', *BMC Health Services Research*, 21(1), pp. 228. https://doi.org/10.1186/s12913-021-06244-3.
- Pedro, F., Subosa, M., Rivas, A. and Valverde, P. (2019) 'Artificial intelligence in education: Challenges and opportunities for sustainable development'. Unesco. https://doi.org/https://hdl.handle.net/20.500.12799/6533.
- Perera, P. and Lankathilake, M. (2023) 'Preparing to Revolutionize Education with the Multi-Model GenAl Tool Google Gemini? A Journey towards Effective Policy Making', *Journal of Advances in Education and Philosophy*, 7(08), pp. 246–253. https://doi.org/10.36348/jaep.2023.v07i08.001.
- Pillai, R., Sivathanu, B., Metri, B. and Kaushik, N. (2024) 'Students' adoption of Al-based teacher-bots (T-bots) for learning in higher education', *Information Technology & People*, 37(1), pp. 328–355. https://doi.org/10.1108/ITP-02-2021-0152.
- Shawky, D. and Badawi, A. (2019) 'Towards a Personalized Learning Experience Using Reinforcement Learning', in *Machine learning paradigms: Theory and application*. Springer, pp. 169–187. https://doi.org/10.1007/978-3-030-02357-7 8.
- Silverman, B.G., Hanrahan, N., Huang, L., Rabinowitz, E.F. and Lim, S. (2016) 'Artificial Intelligence and Human Behavior Modeling and Simulation for Mental Health Conditions', in D.D.B.T.-A.I. in B. and M.H.C. Luxton (ed.) *Artificial Intelligence in Behavioral and Mental Health Care*. San Diego: Elsevier, pp. 163–183. https://doi.org/10.1016/B978-0-12-420248-1.00007-6.
- Sobaih, A.E.E., Elshaer, I.A. and Hasanein, A.M. (2024) 'Examining Students' Acceptance and Use of ChatGPT in Saudi Arabian Higher Education', European Journal of Investigation in Health, Psychology and Education, 14(3), pp. 709–721. https://doi.org/10.3390/ejihpe14030047.
- Susarla, A., Gopal, R., Thatcher, J.B. and Sarker, S. (2023) 'The Janus Effect of Generative AI: Charting the Path for Responsible Conduct of Scholarly Activities in Information Systems', *Information Systems Research*, 34(2), pp. 399–408. https://doi.org/10.1287/isre.2023.ed.v34.n2.
- Tafazoli, D. (2024) 'Exploring the potential of generative AI in democratizing English language education', *Computers and Education: Artificial Intelligence*, 7, pp. 100275. https://doi.org/10.1016/j.caeai.2024.100275.
- Tamilmani, K., Rana, N.P., Wamba, S.F. and Dwivedi, R. (2021) 'The extended Unified Theory of Acceptance and Use of Technology (UTAUT2): A systematic literature review and theory evaluation', *International Journal of Information Management*, 57, pp. 102269. https://doi.org/10.1016/j.ijinfomgt.2020.102269.
- Venkatesh, Morris, Davis and Davis (2003) 'User Acceptance of Information Technology: Toward a Unified View', MIS Quarterly, 27(3), pp. 425. https://doi.org/10.2307/30036540.
- Venkatesh, Thong and Xu (2012) 'Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology', MIS Quarterly, 36(1), pp. 157. https://doi.org/10.2307/41410412.
- Venkatesh, V. (2022) 'Adoption and use of Al tools: a research agenda grounded in UTAUT', *Annals of Operations Research*, 308(1–2), pp. 641–652. https://doi.org/10.1007/s10479-020-03918-9.
- Wach, K., Duong, C.D., Ejdys, J., Kazlauskaite, R., Korzynski, P., Mazurek, G., Paliszkiewicz, J. and Ziemba, E. (2023) 'The dark side of generative artificial intelligence: A critical analysis of controversies and risks of ChatGPT', Entrepreneurial Business and Economics Review, 11(2), pp. 7–30. https://doi.org/10.15678/EBER.2023.110201.
- Wang, K., Ruan, Q., Zhang, X., Fu, C. and Duan, B. (2024) 'Pre-Service Teachers' GenAl Anxiety, Technology Self-Efficacy, and TPACK: Their Structural Relations with Behavioral Intention to Design GenAl-Assisted Teaching', *Behavioral Sciences*, 14(5), pp. 373. https://doi.org/10.3390/bs14050373.
- Wang, Y. and Zhang, W. (2023) 'Factors Influencing the Adoption of Generative AI for Art Designing Among Chinese Generation Z: A Structural Equation Modeling Approach', *IEEE Access*, 11, pp. 143272–143284. https://doi.org/10.1109/Access.2023.3342055.
- Xiao, P., Chen, Y. and Bao, W. (2023) 'Waiting, Banning, and Embracing: An Empirical Analysis of Adapting Policies for Generative AI in Higher Education', SSRN Electronic Journal [Preprint]. https://doi.org/10.2139/ssrn.4458269.

Appendix 1: Questionnaire

Part 1 Demographic Data

1- What is your gender?

Male

Female

2- What is your age?

18-30 years

31-41 years

42 yrs. and over

3- How often do you use GenAl tools?

Once times or less

2-3 times in week

More than 3 times

4- Do you use the paid version of GenAl tools?

Yes

No

Part 2 Items

aitzit	Citis						
Secon	d Part						
Supple	Supplemental resource (Chan and Lee, 2023)						
SR1	GenAl is valuable for answering queries.						
SR2	GenAl helps generate thoughts.						
SR3	GenAl helps conduct analyses.						
Inform	nation accuracy (Chan and Lee, 2023)						
IA1	GenAl tools demonstrate biases in their answers						
IA2	GenAl tools develop factually inaccurate answers						
IA3	GenAl tools generate answers that are out of context or inappropriate						
IA4	GenAl tools generate fake information						
Effort	expectancy (Venkatesh, Thong and Xu, 2012)						
EE1	GenAl tools are easy to use						
EE2	Learning how to use GenAl tools is easy						
EE3	Interaction with GenAl tools is unambiguous and understandable						
Hedon	ic motivation (Venkatesh, Thong and Xu, 2012)						
HM1	GenAl tools are enjoyable.						
HM2	Interacting with GenAl is pleasant.						
НМ3	Using GenAl tools is fun.						
Percei	ved cost (Venkatesh, Thong and Xu, 2012)						
PC1	GenAl tools are affordably priced						
PC2	They provide good value for the money						
PC3	The free plan is better than a paid plan						
Intenti	Intention to use GenAl (Venkatesh, Thong and Xu, 2012)						
Int.1	I intend to use GenAl tools frequently						
Int.2	I plan to use GenAl tools daily.						
Int.3	I intend to continue using GenAl tools in the future.						

Second Part				
Actual	Actual usage of GenAl (Venkatesh, Thong and Xu, 2012)			
AU1	The GenAl tools are a pleasant experience.			
AU2	I use the GenAl tools currently.			
AU3	I spend a lot of time using GenAl tools.			

Appendix 2: Structural Model

