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Abstract: Frustration is a key affective state that affects student engagement and learning outcomes. While mild frustration
can promote persistence in problem-solving, prolonged frustration often leads to disengagement and reduced academic
performance. In traditional learning environments, instructors rely on facial expressions, vocal cues, and behavioral
indicators to identify frustration and provide timely support. Such monitoring becomes impractical in large or digital
classrooms. Artificial intelligence (Al)-based emotion recognition offers a scalable solution by automatically detecting
frustration through facial and speech analysis, enabling adaptive interventions in real time. This study proposes a multimodal
Al system that integrates facial expression recognition using a Convolutional Neural Network (CNN) and speech emotion
recognition with a Transformer-based model. The system uses attention-based feature fusion to improve accuracy by
weighting the more informative modalities. The model was trained on benchmark datasets, including DAISEE, IEMOCAP, and
RAVDESS, and evaluated in a real-world study involving 160 Kazakhstani university students in online and in-person learning
sessions. Al-generated predictions were compared with instructor assessments to validate the system’s performance. Results
indicate that the multimodal system outperforms unimodal approaches, achieving 85% accuracy, 83% precision, and 86%
recall on benchmark data, with 84% accuracy and precision in real-world conditions. Comparative analysis reveals that
speech-based cues are more informative than facial expressions, particularly when frustration is masked or internalized. The
system is less effective at detecting subtle frustration, highlighting the need for greater contextual sensitivity. Although
limitations remain, the results demonstrate the system's potential for scalable implementation in classrooms and online
platforms. These findings support the integration of Al-driven frustration detection into adaptive learning platforms to help
educators identify students at risk of disengagement. By enabling timely intervention and support, such tools can contribute
to more responsive and inclusive educational environments. Future research should explore cultural variation in emotional
expression and long-term effects on learning outcomes.

Keywords: Frustration detection, Emotion recognition, Multimodal learning, Facial analysis, Speech emotion recognition, Al
in education

1. Introduction

Frustration in learning arises when students face challenges that hinder knowledge acquisition. It can result from
unresolved confusion, complex tasks, or inadequate instructional support, influencing academic engagement
and performance (Baker et al., 2025). Minor frustration may promote persistence, but prolonged frustration
often leads to disengagement and stress (Rahman et al., 2024). A survey involving 22,983 Chinese college
students found that 59.9% experienced academic burnout, which can be associated with frustration, particularly
in high-pressure environments (Liu et al., 2023). Therefore, the recognition and mitigation of frustration are
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essential to support student motivation and performance. Additionally, understanding student frustration can
help educators foster a psychologically supportive learning environment, allowing early interventions to reduce
emotional strain and prevent dropout.

Traditional classroom instructors can detect frustration through facial expressions, voice tone, and behavioral
cues, which enables timely intervention. In digital learning environments, frustration is harder to identify and
address. Studies show that approximately 59% of students' frustration with e-texts is linked to extraneous
cognitive load, 19% stems from technological difficulties, and 28% from curriculum-related issues (Novak,
McDaniel and Li, 2023). If left unresolved, these frustrations can adversely affect motivation and learning
outcomes, underscoring the need for more effective digital support systems.

In online learning environments and large classroom settings, personalized support is limited. Artificial
intelligence (Al)-based automatic emotion recognition can bridge this gap by detecting frustration in real time
from students' affective cues (Henderson et al., 2021; Corza-Vargas et al., 2024). Beyond academic interventions,
automated frustration recognition can serve as an early-warning system for educators to identify students who
may need additional psychological consultation. By tracking emotional trends, teachers and counselors can
proactively provide emotional support or recommend mental health resources as needed.

Emotion recognition technology typically utilizes facial expressions and voice signals. Computer vision is
employed to track facial movements, while speech analysis examines vocal features such as pitch and intensity
(Malekshahi, Kheyridoost and Fatemi, 2024). However, single-modal approaches have notable limitations. Facial
expressions may be ambiguous, and speech analysis can be unreliable in noisy conditions (Agung, Rifai and
Wijayanto, 2024). Frustration can also be masked in one modality while being evident in another. Moreover,
models trained on controlled datasets may not generalize well to real-world educational settings. A multimodal
framework that integrates facial and speech cues is therefore required to improve accuracy and robustness
(Henderson et al., 2021). Most prior studies in emotion recognition have concentrated on engagement and
boredom, often relying on single-modal data such as facial expressions or interaction logs, which do not
adequately capture the complexity of frustration (Moon et al., 2022). Speech-based emotion recognition
remains underexplored in this domain (Qian and Han, 2022). This study seeks to address these gaps by
developing a multimodal approach for more accurate frustration detection.

The research involves the development and validation of an Al-based system for detecting student frustration
through facial expression and speech emotion analysis. The research consists of two phases: (1) developing a
hybrid model that integrates a CNN for facial analysis and a recurrent neural networks (RNN) or a transformer-
based model for speech recognition, and (2) empirical validation through controlled learning experiments.

This study addresses the following research questions (RQ):

RQ1: Can a multimodal Al model significantly improve frustration detection compared to single-modal
approaches?

RQ2: How well do automated predictions align with human (instructor) assessments of frustration in real learning
scenarios?

RQ3: What are the practical benefits and challenges of implementing such technology in educational settings?

RQ4: How can machine-driven frustration detection assist educators in identifying students who may need
additional psychological support or consultation?

The findings of this study contribute to the growing field of affective computing by presenting a novel
multimodal approach for frustration detection in education. Scientifically, the research evaluates the
effectiveness of integrating facial and speech cues for emotion recognition and identifies sources of classification
errors. Comparisons between different model variations (e.g., face-only vs. voice-only vs. multimodal) provide
insights into the added value of each modality. Practically, the study offers a prototype system that could be
incorporated into e-learning platforms or intelligent tutoring systems to enhance student support. Additionally,
the discussion on ethical implications, such as obtaining student consent, avoiding biases, and protecting
privacy, provides clear guidance for responsible use of Al in education. Moreover, intelligent frustration tracking
can help educational institutions improve their psychological climate by identifying patterns of emotional
distress among students. By integrating frustration detection with psychological counseling services, schools can
provide targeted support, ensuring that students receive the help they need before frustration negatively
impacts their well-being and academic performance.
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By bridging the gap between theoretical advancements in artificial intelligence and real-world applications, this
study lays the foundation for intelligent frustration detection systems that foster a psychologically supportive
learning environment, improve student engagement, and enhance educational outcomes.

2. Literature Review
2.1 Alin Education: Advances in Multimodal Emotion Recognition

The integration of artificial intelligence in education has led to numerous emotion-aware systems capable of
detecting and analyzing students’ affective states, including frustration (Bustos-Lépez et al., 2022). Al-driven
emotion recognition methodologies predominantly leverage computer vision and speech analysis, utilizing CNNs
for facial expression classification and RNNs or transformers for speech-based affect detection (Abbaschian,
Sierra-Sosa and Elmaghraby, 2021; Wang, 2022). Despite advances, real-world use faces challenges like
expression variability, cultural differences, and ethical concerns pertaining to data privacy and surveillance
(Banzon, Beever and Taub, 2024).

While machine-driven affect recognition offers considerable advantages over conventional self-reporting
mechanisms or interaction log analyses, its practical efficacy is constrained by dataset limitations and
generalization challenges (Moon et al., 2022). Many widely utilized datasets, such as DAISEE (Gupta et al., 2022),
provide valuable benchmark resources but lack ecological validity due to controlled conditions (Aguilera,
Mellado and Rojas, 2023). Similarly, speech-based models often struggle with spontaneous discourse, regional
accent variations, and ambient noise present in authentic classroom interactions (Song et al., 2021). Addressing
these constraints necessitates the development of more robust, adaptable models trained on heterogeneous
datasets reflective of real-world learning environments.

2.2 Frustration in Learning: Cognitive and Behavioral Correlates

Frustration in education involves cognitive load, emotional distress, and behavioral disengagement when
students face academic obstacles (Pekrun and Marsh, 2022). It manifests as an emotional response to perceived
obstacles in learning (Baker et al., 2025). Frustration arises from diverse sources, including unclear instructional
guidance, excessive task complexity, and delayed instructor feedback, all of which influence learning outcomes
(Henderson et al., 2021). Moderate frustration levels may foster problem-solving skills, sustained frustration is
correlated with increased stress, academic disengagement, and attrition (Graesser and D’Mello, 2012).

Empirical research has demonstrated that frustration can be conveyed through a combination of facial, vocal,
and behavioral indicators, including tense expressions, strained vocal tone, and task disengagement (Moon et
al., 2022; Shou et al., 2024). However, Al-based frustration detection models frequently exhibit classification
errors due to emotional similarity with states such as confusion and boredom. Confusion, for instance, is a
precursor to frustration but does not inherently signal emotional distress, thereby complicating automated
classification (Rahman et al., 2024). Moreover, frustration expression is context-dependent, influenced by task
complexity, individual learning history, and cultural norms, necessitating intelligent recognition systems capable
of integrating contextual variables alongside multimodal affective cues (Henderson et al., 2021).

2.3 Comparative Evaluation of Al-Based Frustration Detection Models

Al-based frustration detection methodologies typically follow unimodal or multimodal analytical frameworks.
Unimodal models, such as facial expression (Solanki and Mandal, 2022) or speech-based systems (Song et al.,
2021), often perform poorly due to limited input. CNN-based facial models, though accurate in benchmarks, are
sensitive to lighting, occlusion, and expression variability (Pordoy et al., 2024; Pham et al., 2023). Similarly,
speech emotion recognition models, while effective in controlled environments, exhibit performance
degradation in real-time applications due to background noise and spontaneous linguistic variations (Villegas-
Ch et al., 2023).

Multimodal fusion models have demonstrated superior performance by integrating facial and vocal features,
resulting in higher frustration classification accuracy (Moon et al., 2022). Such models often use feature-level
fusion, combining visual and vocal embeddings to improve robustness. Despite their advantages, multimodal
approaches face challenges related to computational cost, real-time deployment, and dataset bias. Models
trained on narrow datasets often generalize poorly across student demographics, highlighting the need for
broader data sources (Bustos-Lopez et al., 2022). Inconsistent annotation practices make it harder to reach
consensus on what qualifies as frustration in different educational settings. Table 1 summarizes key models and
their methodological strengths and limitations.
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Table 1: Comparative Analysis of Al-Based Frustration Detection Approaches

Study Modalities Model Approach Key Findings Limitations
Solanki and Facial video Custom CNN + ANN on 86.6% accuracy for Limited to visual cues;
Mandal (2022) DAISEE frustration detection lacks contextual
integration
Moon et al. Facial video + Supervised multimodal 10% performance Small sample (31
(2022) interaction logs fusion on custom dataset improvement over students); tested in
unimodal models controlled settings
Song et al. Speech audio Wide ResNet on Enhanced classification Absence of visual cues;
(2021) spectrograms from game- | accuracy over baseline non-educational domain
play corpus CNN focus
Rahman et al. | Facial video + Deep learning fusion Improved robustness in Ethical concerns
(2024) speech model on EmoDetect online learning regarding student privacy

These findings confirm the advantages of multimodal fusion, despite challenges in dataset diversity, real-world
use, and ethical concerns (Mamieva et al., 2023). Multimodal methods consistently outperform single-modality
approaches, supporting the use of combining facial and contextual data. However, small samples and narrow
models scopes still limit generalizability. For example, Solanki and Mandal (2022) reported high accuracy using
detailed facial features, though retraining is likely required for other contexts.

Recent studies demonstrate the growing relevance of multimodal emotion recognition (MER) for educational
contexts where accurate detection of affective states such as frustration is critical. Transformer-based
architectures offer state-of-the-art performance by capturing complex dependencies between modalities (Lian
et al., 2023). Dual-attention mechanisms enhance cross-modal alignment, particularly in speech and facial inputs
(Zaidi, Latif and Qadir, 2024). Models using tensor product fusion and transformer backbones have surpassed
93 percent accuracy in recognizing student emotions during learning tasks (Xiang et al., 2024). Body gesture data
has also proven valuable, with trimodal systems achieving high accuracy by integrating facial expressions,
speech, and posture (Yan et al.,, 2024). Graph-based reasoning networks like Emotion-LLaMA support fine-
grained emotion interpretation and contextual reasoning (Cheng et al., 2024). Systematic reviews emphasize
the need for broader dataset diversity and ethical deployment in classrooms (Ahmed, Al Aghbari and Girija,
2023; Khare et al., 2024). Overall, these advancements confirm the potential of MER technologies to support
emotionally responsive learning environments when implemented with consideration for practical, cultural, and
ethical constraints.

2.4 Ethical Considerations in Al-Based Emotion Recognition

The deployment of automated emotion recognition in education requires close examination of ethical
implications, particularly concerning privacy and algorithmic bias. These systems rely on sensitive biometric
data, such as facial images and voice recordings, raising concerns about data security and informed consent
(Mattioli and Cabitza, 2024). If unregulated, such tools may create a surveillance-oriented environment, where
students modify their behavior due to constant monitoring, potentially undermining pedagogical efficacy (Rhue,
2018). Ethical technology deployment mandates transparency, student autonomy in data sharing, and localized
data processing to mitigate privacy risks (Mattioli and Cabitza, 2024). Recent studies also emphasize the need
for transparent and secure educational technology infrastructures (Sakhipov et al., 2022).

Algorithmic bias is another key concern. Emotion classifiers often vary in accuracy across demographic groups,
leading to differential classification outcomes (Rhue, 2018). Cultural differences in emotional expression further
complicate generalizability, calling for fairness-aware design and diversified training datasets (Corza-Vargas et
al.,, 2024). Interdisciplinary research is essential to ensure ethical alignment with pedagogical and legal
standards.

Future research should focus on expanding dataset diversity, refining fusion models, and enabling adaptive real-
time learning environments. Longitudinal studies are also needed to assess the long-term impact of frustration
detection on motivation and academic resilience (Baker et al., 2025). Additionally, incorporating context, such
as task difficulty and prior performance, may enhance classification and intervention accuracy (Moon et al.,
2022). With stronger technical design and ethical safeguards, emotion-aware Al can become a transformative
tool for supporting student learning while preserving privacy and autonomy.

Overall, the literature affirms the promise of multimodal emotion detection in education. Yet, issues remain
around generalizability, data inclusivity, and ethical implementation. Comparative analyses reveal that while
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multimodal models outperform unimodal ones, their success depends on diverse data, adaptable design, and
bias mitigation. This study addresses these challenges by proposing a robust frustration detection framework,
validating it in authentic settings, and offering ethical guidelines for fair adoption.

3. Materials and Methods
3.1 Data Sources and Preprocessing

This study investigates Al-based frustration detection by developing and evaluating a multimodal recognition
system. The research comprises two primary phases: (1) the development of an Al model integrating facial
expression and speech emotion recognition and (2) empirical validation through controlled learning
experiments.

The model was trained using benchmark datasets, including DAISEE (frustration-labeled video data), IEMOCAP
(emotionally expressive speech), and RAVDESS (acted multimodal emotional expressions). To assess real-world
applicability, an experimental study was conducted with 160 university students in structured learning scenarios
designed to elicit frustration through technical disruptions, complex problem-solving tasks, and delayed
instructor feedback. Al-based predictions were systematically compared with instructor evaluations to assess
classification accuracy, practical feasibility, and ethical considerations related to privacy and bias. A detailed
breakdown of the datasets used is presented in Table 2.

Table 2: Summary of Datasets Used for Model Training

Dataset Samples Participants Emotion Labels Modality
DAISEE (Gupta et al., | 9,068 videos 112 users Boredom, Confusion, Engagement, | Video
2022) Frustration (4 intensity levels)
IEMOCAP (Busso et | 302 dialogues | 10 speakers (5 Angry, Excited, Fear, Sad, Audio-Video
al., 2008) pairs) Surprised, Frustrated, Happy,
Disappointed, Neutral
RAVDESS 7,356 audio- 24 actors (12 Calm, Happy, Sad, Angry, Fearful, Audio-Video,
(Livingstone and visual files female, 12 male) Surprise, Disgust (speech) + Song Audio-only,
Russo, 2018) emotions Video-only

3.2 Al Model Architecture

The multimodal Al architecture, illustrated in Figure 1, integrates two primary branches: a convolutional neural
network for facial expression analysis and a transformer-based model for speech emotion recognition.

’ Facial Image (Input) I

|

// R
Facial CNN Feature Extraction
(ResNet-18 / VGG16)
/

Face Detection & Alignment /Audio Transformer /
(MTCNN / OpenCV) RNN Feature Extraction

Feature Fusion
(Attention-based Multimodal Fusion)

I

Fully Connected Layer with Sigmoid Ac(ivalD

— N

_ L

Frustration Probability
(0-1 Range)

Audio Slgnal (Input) |

Audio Preprocessing
(MFCC Extraction, Noise
Reduction)

Figure 1: Multimodal Al Architecture for Frustration Detection, lllustrating the Facial CNN, Audio
Transformer, and Fusion Layers
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The CNN, based on ResNet-18 or VGG16, extracts both low- and high-level features relevant to frustration
detection, such as textures, furrowed brows, and narrowed eyes. A feature pyramid module enhances the
model’s ability to capture fine-grained facial expressions (Mamieva et al., 2023). Instead of direct classification,
the CNN generates an embedding vector, which is smoothed over time to reduce sensitivity to brief fluctuations.
For speech processing, the model analyzes Mel-frequency cepstral coefficients (MFCCs) to extract frustration-
related vocal cues. Both LSTM and Transformer architectures were considered, with the Transformer
outperforming LSTM in capturing early vocal indicators of frustration.

Feature fusion was implemented using an attention-weighted strategy, dynamically prioritizing facial or vocal
cues depending on their informativeness (Wang et al., 2023; Zaidi, Latif and Qadir, 2023). The final classification
layer applies a sigmoid activation function, using binary cross-entropy loss for optimization. Dropout and L2
regularization were included to prevent overfitting.

The CNN and speech models were pre-trained separately before being combined for joint fine-tuning. The fusion
mechanism adapts dynamically, giving priority to facial expressions when vocal signals are unclear, and vice
versa. This approach significantly improves accuracy over unimodal models (Moon et al., 2022). To minimize
false positives, frustration is detected only when both modalities indicate it, or when at least one parameter
exceeds a critical level. The architecture is depicted in Figure 1, illustrating the integration of facial and vocal
modalities within the frustration detection system.

3.3 Experimental Setup

The proposed model was evaluated through two main experimental phases: (1) offline evaluation on curated
datasets, using train/validation/test splits to measure baseline performance, and (2) real-time experimental
testing with student volunteers in real learning scenarios to assess real-world effectiveness and compare Al-
based frustration detection with human observations. The overall structure of these experimental phases is
illustrated in Figure 2.

Experimental Phases for Frustration Detection Model Evaluation

(1) Offline Evaluation {Dataset-Based Testing) | | (2.1) Live Experimental Testing (Student Volunteer Study) | | (2.2) Al Model Evaluation in Live Settings

|
[ Dataset Preparation ‘ I Participant Setup ‘ | I [ Real-Time Analysis }
| | 1
| I Informed consent; no data storage. l |

. ‘ Comparison with Human Observations
IEMOCAP: Stratified session-based split |
(4 train, 1 validation).
| |

160 students (80 online, 80 in-pe .
DAISEE: User-independent train/val/test split. nts ( ! in-person)

True Positive: Al matches instructor's frustration label.
False Positive: Al flags frustration incorrectly.
False Negative: Al misses observed frustration.

— |

RAVDESS: Augmentation with reserved
validation samples.

s )| Frustration Scenarios

| | 1. Technical Issues (e.g., lag, errors, device failures). | ¢
l 2. Difficult Assignments (tasks slightly beyond skill level)
3. Lack of Instructor Feedback (deliberate delays).
| Model Training & Validation | #T| ¥
l | | | Statistical Validation |

Training with curated datasets. Il
Hyperparameter tuning on validation set. I
Final evaluation on test set.

\ I Sessions: 30-45 minutes per participant
| I h 1
[ Performance Metrics ‘ I ! I ( Ethical Considerations ‘
i |
Accuracy, Precision, Recall, F1-score. ‘ I ‘ ( Data Collection ‘ I L

Confusion matrix analysis. | . . . | |
Real-time analysis (webcams, microphones).
1| Optimized lighting/audio, no recordings.
| l e — - - - - - - - - - - — —
W |

Session Design ‘

Scenarios randomized with neutral periods. Cohen'’s kappa for Al-human agreement.

| | Precision, recall, F1-score.
I | Temporal analysis (Al vs. human detection timing).

Anonymized data, post-session debriefing.

Moderate frustration induction, no severe distress. ‘

I

I

I

I

I

|

I

I

|

[ Scenario-Based Performance Analysis J |

» |

|

I

I

I

I

I

I

I

I

I

Ground Truth Labeling

Student self-reports (frustration rating 1-5).

Instructor observations (facial cues, behavior).
Consensus review for accuracy.

Figure 2: Experimental Phases for Frustration Detection Model Evaluation

This research followed the official DAISEE partitions: the training set for model training, the validation set for
hyperparameter tuning, and the test set for final evaluation. DAISEE ensures a user-independent split (no
overlap between train/val/test), which helps reduce overfitting. For the IEMOCAP audio, following the approach
of Busso et al. (2008), a stratified split was conducted based on the five dialogue sessions. Four sessions were
used for training and one for validation, rotating for cross-validation due to the small speaker pool. RAVDESS,
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following the framework outlined by Livingstone and Russo (2018), primarily served to augment training. A
subset was used for mini-validation to monitor overfitting.

The evaluation employed standard classification metrics: Accuracy, Precision (true positives / [true positives +
false positives]), Recall (true positives / [true positives + false negatives]), and Fl-score (harmonic mean of
precision and recall). These metrics were calculated on both held-out dataset partitions and subsequently
validated with volunteer testing data. Confusion matrices helped analyze frequent misclassifications (e.g.,
confusion vs. frustration).

A total of 160 university students joined controlled learning sessions. Participants provided informed consent,
and no media were stored. Half participated online via personal computers and webcams, and half attended in-
person classes with cameras and microphones, addressing different practical challenges related to equipment
setup.

Frustration scenarios were based on common triggers from prior research: (1) technical issues (e.g., slow
loading, errors, or hardware malfunctions); (2) difficult assignments, slightly beyond skill levels to induce
productive struggle; and (3) lack of instructor feedback, where instructor responses were intentionally delayed,
creating feelings of being unsupported. Each participant faced randomized frustration scenarios alongside
baseline tasks. Sessions lasted approximately 30-45 minutes.

Student facial and vocal data were analyzed in real time via webcams (online) or classroom cameras and
microphones (in-person), without storing recordings. Lighting and audio conditions were adjusted for realistic
settings. Frustration instances were identified using scenario timestamps, instructor observations, and student
self-reports. Instructors or trained researchers monitored facial expressions, vocal reactions, and behavioral
cues (e.g., sighs, frowns, disengagement). Participants rated their frustration on a 1-5 scale, refining observer
assessments. Discrepancies were resolved through second rater consensus to ensure labeling accuracy.

After obtaining informed consent, the model processed facial and speech data in real time using a sliding-
window approach, generating frustration probabilities flagged when exceeding optimized thresholds. Detected
instances, logged with timestamps, were compared to human observations to assess true positives, false
positives, and false negatives. Performance metrics such as precision, recall, accuracy, and F1-score were used
to evaluate scenario-specific strengths and weaknesses (Table 3). Ethical guidelines ensured minimal distress,
with real-time processing conducted anonymously without data retention. Post-session debriefings confirmed
participant well-being. Statistical analyses, including Cohen’s kappa, measured alignment between Al
predictions and human labels, validating the model’s effectiveness and identifying areas for improvement.

3.4 Ethical Considerations

Ethical principles guided all stages of this study, with particular focus on privacy, informed consent, and bias
mitigation. To protect participants, no video, photo, or audio recordings were stored during testing; only real-
time outputs were analyzed. Results were anonymized, and all visuals used in analysis were either blurred or
abstracted. The system is designed to function without storing raw data, allowing real-time, local processing on
user devices. These measures ensure compliance with the General Data Protection Regulation (GDPR), including
principles of data minimization and informed processing.

All participants provided informed consent after being clearly briefed on the study’s goals, data use, and their
right to withdraw. It was explicitly stated that the Al was a research tool and not a diagnostic system, reducing
any psychological pressure. Bias mitigation efforts included the use of diverse datasets (e.g., DAISEE, IEMOCAP,
RAVDESS) and a participant pool representing multiple genders and ethnicities. A multimodal fusion approach
helped reduce bias from any single input source.

The system is intended to support learning, not monitor or penalize students. Its outputs are meant to prompt
supportive interventions, not judgments. Ethical safeguards were applied throughout to prioritize student well-
being and ensure the system remains a responsible and learner-centered tool.

4. Results and Discussion
4.1 Performance Analysis of Al-Based Frustration Detection
4.1.1 Phase 1: Results of offline evaluation (dataset-based testing)

As shown in Table 3, the multimodal model outperformed the single-modality baselines. Precision (83%) and
recall (86%) show the model detects frustration accurately without excessive false positives. This balance
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suggests the model is both effective at identifying frustration and avoiding excessive false positives —a desirable
trait for practical use. The model's success is attributed to the complementary strengths of facial and voice
signals: when one modality failed, the other often compensated. For instance, a sample with a neutral facial
expression but frustrated vocal tone was correctly flagged by the audio model. Conversely, another case with a
calm voice but a scowling face was accurately classified by the vision model. The attention-based fusion
mechanism dynamically prioritized the more informative input, improving robustness. Benchmarks from prior
studies suggest that this F1-score (0.85) is competitive. While direct comparisons are difficult due to dataset
differences, the performance is higher than some prior multimodal models, particularly in binary frustration
classification.

Table 3: Performance of Unimodal vs. Multimodal Models on Test Data

Model Variant Accuracy | Frustration
Precision | Recall | F1-score
Facial CNN (vision only) 75% 0.78 0.70 0.74
Audio Transformer (audio only) 78% 0.80 0.75 0.77
Multimodal CNN+Audio (fusion) 85% 0.83 0.86 0.85

As summarized in Table 3, the multimodal fusion achieved a notable Fl-score improvement (+11%) over
unimodal models, demonstrating its practical value in capturing frustration that might be missed when relying
solely on facial or vocal cues.

4.1.2 Phase 2: Results of real-time experimental testing

The real-world evaluation tested the model on 160 students across 216 frustration-inducing scenarios. Instructor
observations confirmed 207 actual frustration instances, while the Al flagged 186 instances (Table 4), of which
178 were true positives, 8 were false positives, and 30 were missed detections. Additionally, the model correctly
identified 32 cases where students were not experiencing frustration (true negatives), distinguishing them from
similar emotions like confusion or concentration. The model achieved 84% precision and 86% recall, closely
aligning with its offline test performance. This suggests it generalizes well, though some cases of internalized
frustration were missed, and confusion was occasionally misclassified as frustration.

To further analyze the model’s classification performance, Figure 3 presents the confusion matrix for frustration
detection. The matrix illustrates true and false classifications in the test dataset. The true label represents the
actual frustration state as determined by human observers, while the predicted label indicates the Al’s
classification output.

160

30 140

Frustration

120

=100

- 80

True Label

No Frustration
o

- 60
32

-40

520

Frustration No Frustration
Predicted Label

Figure 3: Confusion Matrix for Frustration Detection
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Table 4 shows that frustration induced by delayed feedback was the most difficult for students, and also yielded
the highest detection rate (87%). However, confusion during challenging tasks led to more false positives,
suggesting a need for better differentiation.

Table 4: Frustration Detection Results in Different Learning Scenarios (N=160 students)

Frustration Instances (students) with Detected Cases Detection Noted False Alarms
Scenario frustration (per instructor) | of Frustration Rate (Recall)
Technical 40/80 (online group only, 36 out of 40 90% 1 (in 2 cases model thought
Issues (online) | N=80 online students, 40 actual cases frustration during minor lag that
showed frustration) student shrugged off)
Difficult 56/160 (some students 46 out of 56 ~82.14% 3 (flagged students as
Assignment enjoyed challenge) cases frustrated, but they reported
only mild confusion)
Lack of 120/160 (most students 104 out of 120 ~86.7% 4 (brief frustration was flagged
Feedback found being ignored cases in cases where students were
frustrating) only slightly annoyed)

(Note: Each scenario was conducted for each student. “Instances with frustration” is how many students actually
felt frustrated in that scenario according to observation/self-report. “Detected Cases” is how many of those
instances the system successfully flagged. False alarms indicate cases where frustration was flagged, but
observers did not confirm its presence.)

Tables 3 and 5 show the model's high precision (83% on test data, 84% in experiments), meaning most flagged
frustration instances were accurate. However, optimizing the detection threshold is crucial because lowering it
boosts recall but risks more false alerts, which may be impractical in a classroom. Qualitative observations
revealed a reliance on overt signals. Vocal expressions such as sighs triggered instant detection, while silent
frustration took longer to register due to temporal smoothing. Masked emotions, such as polite smiles covering
irritation, often went undetected, reflecting a limitation shared by human observers. Interestingly, participants
who quickly shifted from frustration to focus were sometimes initially misclassified as frustrated, but the
probability decreased as their demeanor stabilized. This suggests the system captured momentary states rather
than persistent frustration. Overall, the model effectively detected frustration when clear cues were present but
struggled with internalized frustration and confusion misclassification. Further improvements may include
context-aware features (e.g., task difficulty) and adaptive sensitivity based on individual patterns.

Figure 4 shows that Al-based frustration detection closely matches instructor evaluations, particularly for
technical issues (90%) and lack of feedback (87%). While the model slightly underperforms in recognizing
frustration from difficult assignments (82% vs. 95%), overall results indicate its reliability. This suggests the
system operates effectively without constant instructor oversight and is scalable for large or online classes.

Comparison of Al-based Frustration Detection vs Instructor Evaluations
100% 95% 1007 @ Instructor-labeled Frustration
90% 90% @
87% Al-detected Frustration
82%
75%
50%
25%
0
Technical Difficult Lack of
Issues Assignment Feedback

Figure 4: Al vs. Instructor Frustration Detection
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4.2 Comparative Analysis of Model Variations

To evaluate the effectiveness of the multimodal approach, experiments were conducted on the same group of
students, with each modality activated sequentially before combining them. Frustration detection was first
assessed using facial expressions, then vocal cues, and finally both together in a multimodal fusion model. This
sequential approach enabled a direct comparison, confirming the advantages of multimodal fusion. As shown in
Table 5, the fusion model outperformed unimodal models by ~10% in accuracy, demonstrating that frustration
is best detected through a combination of facial and vocal signals rather than a single modality alone.

Among single-modality models, the audio model (78%) slightly outperformed the facial model (75%), suggesting
that vocal cues were more reliable for frustration detection. This could be due to facial masking in formal
settings, while vocal tone is harder to control. Additionally, DAISEE’s frustration labels may have included milder
cases that were visually ambiguous, whereas IEMOCAP’s frustration-labeled utterances were clearer. The
attention-based fusion further improved performance (F1 = 0.85) by dynamically adjusting modality weights,
favoring voice when facial cues were neutral and vice versa. Multimodal fusion improved detection confidence
and reliability. Notably, hidden frustration misses were lowest with the fusion model, indicating better capture
of nuanced emotional signals.

Table 5: Analysis of Frustration Detection by Parameter During the Experimental Phase

Performance Errors Confidence
Accuracy | Precision | Recall F1- Hidden Average Max
score Frustration Confidence Confidence
Misses (Conf. Avg) (Conf. Max)
Facial CNN 7% 0.79 0.70 0.74 7 0.71 0.92
(Vision)
Audio 76% 0.79 0.76 0.77 6 0.74 0.95
Transformer
Multimodal 84% 0.84 0.86 0.85 10 0.81 0.98
Fusion
+% from CNN +9.1% +6.3% | +22.9% | +14.9% +42.9% +14.1% +6.5%
+% from +10.5% +6.3% | +13.2% | +10.4% +66.7% +9.5% +3.2%
Audio

Error analysis identified key challenges in unimodal models. The facial model often misclassified concentration
as frustration, while the audio model confused high-arousal emotions like excitement with frustration. The
fusion model reduced these errors by leveraging cross-modal context, though misclassifications persisted when
both modalities misaligned, such as strained vocal tones paired with a furrowed brow. Transformer-based audio
processing outperformed LSTM (~2-3% higher F1-score), likely due to its ability to capture key vocal cues early.
The model’s decision window (2-5s) balanced reactivity and stability, avoiding the noise of shorter windows
while preventing missed transient frustration signals in longer ones.

This analysis directly addresses the research questions (RQ).

RQ1: Can a multimodal Al model significantly improve frustration detection compared to single-modal
approaches?

The findings demonstrate that the multimodal Al model (Accuracy = 85%, Fl-score = 0.85) significantly
outperforms unimodal approaches, including facial expression analysis alone (75%) and speech emotion
recognition alone (78%). These results highlight the advantage of integrating both modalities, as they provide
complementary information that enhances the reliability of frustration detection.

RQ2: How well do automated predictions align with human (instructor) assessments of frustration in real learning
scenarios?

The study demonstrates a strong alignment between Al-based frustration detection and instructor evaluations,
with a precision of 84% and recall of 86%. This suggests that the Al system is highly effective in identifying
frustration when clear affective cues are present. However, some limitations persist, particularly in cases where
frustration is internalized or subtly expressed, leading to occasional false negatives.

RQ3: What are the practical benefits and challenges of implementing such technology in educational settings?
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The system's ability to detect frustration in real-time suggests its potential integration into adaptive learning
platforms. However, effective implementation requires careful calibration of detection thresholds to balance
sensitivity and specificity, minimizing false alarms while ensuring meaningful intervention opportunities.
Additionally, ethical considerations related to privacy, consent, and potential bias must be addressed to facilitate
responsible deployment in educational environments.

RQ4: How can machine-driven frustration detection assist educators in identifying students who may need
additional psychological support or consultation?

The system’s capacity to detect early indicators of frustration enables educators to identify students at risk of
disengagement or heightened emotional distress. This proactive approach can support timely psychological
interventions, fostering a more supportive learning environment. Future refinements, particularly in context-
aware modeling and personalized sensitivity adjustments, will further enhance the system’s capacity to assist
educators in addressing students' emotional and academic needs.

4.3 Interpretation of Errors and Model Limitations

While the model effectively detected frustration, certain limitations led to errors. Key issues include: (1)
Confusion vs. Frustration Misclassification: The model often mistook confusion for frustration, especially in
students concentrating intensely. Expressions like furrowed brows and squinting appeared in both states,
making differentiation difficult. The binary classification approach did not explicitly account for confusion,
leading to misclassifications. A multi-label model or task performance data (e.g., tracking incorrect attempts)
could help distinguish these emotions. (2) Subtle or Internalized Frustration Misses: Some students exhibited
frustration in subtle ways, such as posture changes, which the Al struggled to detect. Unlike a human instructor
who could infer frustration from context, the model lacked situational awareness. Temporal smoothing, while
reducing false positives, sometimes ignored brief frustration moments. A more context-aware approach could
improve detection of mild frustration. (3) Short-lived or Contextual Frustration: The model flagged temporary
frustration that quickly resolved, such as brief reactions to technical issues. Since it did not track frustration
duration, alerts were sometimes unnecessary. Future refinements could incorporate frustration persistence
tracking (e.g., only triggering alerts if frustration lasts over 30 seconds). (4) Sensor/Input Limitations: Real-world
conditions, such as face occlusion, poor lighting, or background noise, impacted detection. In group settings,
isolating a single student’s voice was challenging, leading to misattributions (e.g., detecting another student’s
sigh as frustration). The audio model also struggled with soft-spoken frustration, as it prioritized vocal intensity.
Integrating speech-to-text analysis could help by identifying explicit frustration-related words rather than relying
solely on tone.

These limitations are consistent with the Cognitive Disequilibrium Theory (Graesser and D’Mello, 2012), which
suggests that frustration and confusion lie on a continuum, where unresolved confusion may develop into
frustration. This may partly explain the model’s difficulty in distinguishing between the two. A lack of contextual
awareness also led to occasional false positives unrelated to coursework. Incorporating task-related metrics,
such as incorrect attempts or delayed responses, and applying adaptive thresholds based on individual
expressiveness could improve detection accuracy. Although these refinements were not implemented due to
sample size constraints, the system still provides valuable early indicators to support instructors.

4.4 Ethical Considerations and Bias in Al-Based Emotion Detection

The study involved university students from Kazakhstan, representing both European and Central Asian
ethnicities. This reflects local diversity and helped calibrate the model to common facial and vocal expressions
in the region. While performance was consistent across tested groups, generalizability to other populations
remains uncertain due to cultural and linguistic differences in emotional expression.

The study identified no major biases across gender or ethnicity, though the limited sample size prevents
definitive conclusions. The model may still underperform for individuals expressing frustration atypically,
including culturally diverse or neurodivergent students. This echoes concerns from Al proctoring systems about
fairness and unintended impacts (Sakhipov, Omirzak and Fedenko, 2025). Both false positives and missed
detections could affect student support, reinforcing the need for larger, more varied datasets and ongoing
evaluation.

Participants sometimes altered their behavior due to awareness of being monitored, highlighting the importance
of minimizing observer effects. Emotion detection tools should assist, not surveil, with final decisions left to
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educators. Ethical deployment requires full transparency, informed consent, and compliance with GDPR and
UNESCO principles to ensure fairness, privacy, and student trust.

4.5 Implications and Applications

The promising performance of the frustration detection model opens up several applications in adaptive learning
systems. One immediate use is real-time alerts for instructors. In in-person or online classroom settings, a
dashboard could highlight students displaying frustration, such as by placing a red border around their video
feed, allowing teachers to check in before a student disengages. This early warning system would help guide
targeted interventions, enabling more proactive classroom management. An early version of the frustration
analysis interface is shown in Figure 5; future versions may introduce design improvements and expand
visualization capabilities.

Frustration Analysis Panel RUIKZ| EN

Active students: 40 Search...

Student #1 (id23) Low (No fr

Connection time: 00:05:22 More ¥
Student #2 (id24) Mediurr
Connection time: 00:03:19 More ¥

Student #3 (id25) Low (.

Connection time: 00:02:43 More ¥

Student #4 (id27) High (intervention is required)
Connection time: 00:01:17

Student is experiencing significant difficulties, possibly

Frustration level of the student stress or irritation.

m-_N I‘I I\I

Recent changes: increased frustration in the last 2 minutes.

Recommendations:

+ Contact the student to clarify what difficulties they
are facing

+ Offer support: provide a hint, additional explanation,
or an opportunity to ask questions.

+ Assess the complexity of the assignment: it may
require clarification or adjustments.

+ Suggest a short break if needed.

Figure 5: Real-Time Frustration Analysis Panel: Student Frustration Detection with Intervention
Recommendations

The Al model can enhance adaptive tutoring by adjusting content based on frustration detection. When a
student struggles, it can offer hints, encouragement, or modify the difficulty level to maintain learning flow. Self-
awareness feedback could help students regulate emotions by suggesting breaks or review sessions. Aggregated
frustration data informs curriculum improvements, highlighting lessons that need refinement. Tracking
frustration trends enables personalized support, while emotion data can optimize group learning by balancing
teams. Expanding detection to boredom or confusion could refine engagement strategies. Real-time frustration
indicators and adaptive feedback foster student engagement, emotional regulation, and curriculum
optimization.

The findings highlight the practical viability of multimodal Al systems for real-time frustration detection in
educational environments. Technologically, the proposed model can be integrated into adaptive learning
platforms, enabling timely and personalized interventions. Pedagogically, it supports instructors in identifying
at-risk students, facilitating early emotional and academic support. At the institutional level, aggregated
frustration trends may inform curriculum design and psychological service allocation. The findings provide a
foundation for implementing frustration-aware feedback in intelligent tutoring systems and for guiding
institutional strategies that enhance student support and well-being.

5. Conclusion

This study demonstrates the potential of Al-based emotion recognition to support education through a
multimodal system that detects student frustration using facial and vocal cues. The model outperformed
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unimodal approaches and showed high accuracy in both controlled and real-world conditions, offering practical
benefits for adaptive learning. By providing real-time emotional feedback, the system can help instructors
identify at-risk students and respond with timely support, especially in digital or large-scale classrooms where
individual monitoring is limited. In addition to individual interventions, such tools may also contribute to a more
emotionally supportive classroom climate by making students' affective states more visible and actionable for
educators.

The findings underscore the importance of integrating multiple modalities to capture both overt and subtle
expressions of frustration. While the system shows promise, it was tested in structured scenarios and uses binary
classification, which may oversimplify emotional dynamics. Its broader effectiveness and long-term impact on
learning remain to be explored. Future work will also focus on refining multi-label classification, expanding cross-
cultural validation, and embedding emotion-aware systems into diverse educational technologies. Educators
and edtech developers may consider integrating such systems as part of responsive instructional design, guided
by clear protocols for transparency, consent, and student support.

6. Limitations and Future Work
6.1 Delimitations of the Study

This study intentionally focused on the detection of frustration as a target emotional state, excluding other
related emotions such as confusion, boredom, or anxiety. The participant pool was limited to university students
in Kazakhstan to ensure contextual consistency and manageability, and findings may not generalize to other
demographics or educational settings. Only facial and vocal modalities were used for emotion recognition;
behavioral logs, physiological data, and contextual cues were deliberately excluded. The system was tested in
short, individual learning sessions, and long-term emotional trends or academic outcomes were not examined.
Additionally, considerations such as data storage, privacy, and large-scale deployment in real classroom
environments were beyond the scope of this initial study, which was primarily focused on developing and
validating the core Al model. These aspects are recognized as important directions for future research and
practical implementation.

6.2 Research Limitations

The sample consisted of 160 university students from Kazakhstan, reflecting local ethnic diversity. While this
ensures cultural relevance, it limits generalizability to other populations where frustration may be expressed
differently. The model was also trained on benchmark datasets containing acted emotional responses, which
may not fully reflect how frustration occurs in real educational settings. As a result, the model's behavior in
natural classroom environments remains untested.

The system was evaluated using binary classification, which simplifies emotional states and does not capture
transitions between related emotions such as confusion or disengagement. In addition, the study did not
examine whether using frustration detection leads to improved academic performance, motivation, or
persistence. This remains an open question for future applied research. Although behavioral context such as
task progress was observed during annotation, the model itself does not use these signals as input. Incorporating
them could improve detection of subtle or internalized frustration.

6.3 Future Directions

Future research should explore the impact of Al-based frustration detection on academic outcomes, including
learning performance, task completion, and knowledge retention. Experimental studies could assess whether
real-time emotional feedback enhances student engagement, motivation, or instructional responsiveness. It is
also important to examine effects on metacognitive regulation, help-seeking behavior, and persistence in
cognitively demanding contexts. Embedding the system into existing educational platforms would allow for
usability testing and evaluation of how instructors and learners interpret and apply emotional insights. Further
work should address generalizability by testing across age groups, languages, and educational systems, as well
as through longitudinal designs that capture emotional dynamics over time. Improving detection sensitivity may
require integrating behavioral indicators such as gaze, response timing, or interaction patterns. Models that
account for emotional transitions could support more adaptive and context-aware feedback. Finally, the
pedagogical use of emotion data must be guided by principles of transparency, privacy, and student autonomy,
requiring close collaboration between Al developers, educators, and institutional stakeholders.

Al Statement: Al tools were not used for writing or generating the content of this research paper. Artificial
intelligence was only employed during model development and performance evaluation for frustration
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detection. All research design, data analysis, and manuscript preparation were conducted manually by the
authors.

Ethics Statement: This study followed strict privacy and confidentiality standards. No personally identifiable
information was collected, stored, or accessed by the researchers at any point. Facial and vocal inputs were
processed locally and automatically by the Al model in real time, with no human access, recording, or
transmission. No raw biometric or behavioral data were retained or available during or after the study. All
analysis was based on fully anonymized outputs. Participants provided informed consent prior to participation,
and the study was designed to ensure minimal intrusion and no harm. The research complies with the GDPR,
ensuring lawful, fair, and transparent processing aligned with privacy-by-design principles for Al applications in
education.
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