
ISSN 1566-6379 254 ©Academic Publishing International Ltd 
Reference this paper as: Whyte,G and Mulder, D ,L. “Mitigating the Impact of Software Test Constraints on 
Software Testing Effectiveness” The Electronic Journal Information Systems Evaluation Volume 14 Issue 2 2011, 
(pp254-270), available online at www.ejise.com 

Mitigating the Impact of Software Test Constraints on 
Software Testing Effectiveness  
Grafton Whyte and Donovan Lindsay Mulder 
University of the Western Cape, Cape Town, South Africa 
drgwhyte@aol.com 
donovanmulder@hotmail.com 
 
Abstract: Software testing is the one of the primary methods used in the validation and verification of output in 
the software development industry. It is seen as a key method for achieving software quality, reliability, fitness for 
purpose and customer satisfaction. Software testing is however an expensive process accounting for as much as 
50% of the cost of developing software based systems. In recent years, software testing as a discipline has come 
under pressure due to time, cost and skills constraints. These constraints impact negatively upon software test 
effectiveness. Therefore it is critical to identify and implement test tools that reduce the negative impact of 
software test constraints on software test effectiveness. In this paper the researchers examines some of the most 
popular software testing tools such as test case prioritisation, test suite reduction and test selection criteria, to 
identify: Which individual test tools are most likely to yield optimal test effectiveness and, Which combination of 
test tools is most likely to yield optimal test effectiveness and mitigate the effect of test constraints An extensive 
review of the software testing literature was conducted and used to construct a survey instrument as the basis for 
examining the impact of test constraints on software test methodology. The survey was issued to expert software 
test practitioners from various locations globally; the sample consisted of 43 test cases. The main findings were 
that no one approach to testing would yield satisfactory results but a combination of two or more test types from 
Automated testing, Smoke testing, Test case prioritisation and Regression test selection could yield effective 
software testing results and mitigate the effects of test constraints. 
 
Keywords: software test tools, software test effectiveness, software test constraints, test selection methodology, 
test case selection criteria 

1. Introduction 
As the significance of software increases aspects such as quality, reliability and customer satisfaction 
have become strategic factors for software development organisations (Huang, 2005). There are 
various methods of software verification and validation. These are reviews, walkthroughs, software 
inspections, formal methods and software testing. Of these, software testing has been the method of 
choice for software validation and verification. Software testing is a costly and unavoidable task 
(Bertolino, 2007). It is a complex and arduous task (Shahamiri, 2009; McMinn, 2009; Srikanth et al., 
2005a & b) which can consume more than 50% of the cost of a software development project without 
adding any basic functionality to the end product. It however, remains the method of choice through 
which confidence in the end product is realised (Ramler and Wolfmaier, 2006). Engel and Last (2007), 
state that inadequate execution of software and systems verification, validation and testing account 
for losses that can eclipse more than 10% of company’s turnover. 
 
In today’s software development environment testing has come under pressure due to shorter product 
time to market, shrinking budgets and higher quality demands (Ramler and Wolfmaier, 2006; Srikanth 
et al., 2005). According to Bryce and Colbourn (2005) software testing is an expensive time 
consuming process which is often restricted by cost and time constraints. According to a study by 
Huang (2005), defect detection rate is impacted by the skill level of test personnel and size of the 
project. As does testability (Berner et al., 2005) of the system. Do et al., (2008) argue that time 
constraints impact upon regression testing and negatively impacts on the cost effectiveness of test 
case prioritization methodologies. According to Berner et al., (2005) in most instances, systems are 
hard to test because of the “cumbersome architecture” rather than the complexity of the system. Often 
this is due to poorly specified requirements with inadequate description of user feedback. This is 
particularly apparent in test automation where test cases rely on user feedback in order to execute as 
expected.  
 
Software testing drives are commonly beleaguered by constraints such as time, cost, and insufficient 
skills. These constraints impose risk on the realisation of software test effectiveness with respect to 
software testing goals. Understanding how to mitigate this risk is a key-factor in achieving successful 
software testing. This research aims to identify software test tools which can increase software 

mailto:drgwhyte@aol.com�
mailto:donovanmulder@hotmail.com�


Grafton Whyte and Donovan Lindsay Mulder 
 

www.ejise.com 255 ISSN 1566-6379 

test effectiveness and thereby support effective software testing in the presence of software 
test constraints. 
 
In order to realise this objective the following research questions are answered. 
 
Main Research Question 
 What test approaches are most likely to reduce the negative impact of test constraints on test 

effectiveness? 
Sub-Questions 
 What is software testing? 
 What is software test effectiveness? 
 What are the goals of software testing? 
 What is effective software testing? 
 What are the existing software test constraints and what impact do these constraints have on 

software test effectiveness? 
 What are the existing software test tools and what impact do these tools have on software test 

effectiveness? 
 What are the existing test selection criteria and what impact do these criteria have on software 

test effectiveness? 
This paper is organised as follows: A literature review is presented in section 2, the research 
methodology is presented in section 3, the research results are presented in section 4, a discussion of 
the results and the test management implications is presented in section 5 and a conclusion with 
recommendations for future research is presented in section 6. 

2. Literature review 

2.1 Terminology 
For the purposes of this paper the researchers define a: 
 Test tool as any methodology, process or know-how that contributes to software testing and as 

such is not limited to software based test tools. 
 Test approach as one or a combination of test tools used to implement software testing. 
 Test constraint as any factor that inhibits the software testing process from achieving the desired 

levels of performance. 
 Test Design refers to test case content and test case size. 

2.2 Effective software testing 
In the following discussion the research sub-questions 2 to 6 are discussed. Software testing is 
defined as the observation of the execution of software based systems in order to verify that the 
system behaves as expected and to identify defects in the system under test (Bertolino, 2007). 
Software test effectiveness is defined as the number of defects found through software testing 
divided by the total number of defects (Vallespir and Herbert, 2009). Defects can occur at any stage in 
the software development lifecycle. Early identification of software defects is essential in order to 
minimise risk due to defect proliferation and minimise validation costs (Baresi and Pezze, 2006). 
Goals of software testing are improvement of software quality and reliability through defect detection 
resulting in increased customer satisfaction (Shahamiri et al., 2009; Huang, 2005; Baresi and Pezze, 
2006). Risk mitigation is also an aim of software testing (Frank, 2000).  
 
Given the statements above one can conclude that effective software testing possesses the 
following characteristics: (a) it is on schedule, (b) has high defect detection capability, (c) has high 
detection rate and is (d) cost effective.  
 Software testing that is on schedule compared to software testing that is not, reduces the risk 

imposed by time constraints, such as product time-to-market, which is often critical for 
establishing or maintaining the company’s competitive advantage.  



Electronic Journal Information Systems Evaluation Volume 14 Issue 2 2011 
 

www.ejise.com 256 ©Academic Publishing International Ltd 

 Software testing that has a high defect detection capability compared to software testing that does 
not, has a higher probability of finding hard to find defects early in the software development life 
cycle thereby assisting the company achieve positive customer perceptions.  

 Software testing that has a high defect detection rate compared to software testing that does not, 
is more likely to find most defects early in the software development life cycle thereby contributing 
to the overall cost effectiveness of a software development drive.  

 Software testing that is cost effective compared to software testing that is not is more likely to stay 
within budget. These characteristics are illustrated in figure 1. 

 

Figure 1: Characteristics and goals of effective software testing 
The question that one has to ask here is, how are these characteristics of effective software testing 
realised in the presence of test constraints? 
 
Bryce and Colbourn (2005) state that due to time and cost constraints entire test suites in most 
instances are not run. In these instances it is of utmost importance to prioritise tests. Test case 
identification and prioritisation models are methods for reducing the cost and increasing the 
effectiveness of software testing through test case relevance modelling and prioritization (Rothermel 
et al., 2004). Rothermel et al., (2004) discusses four regression test methodologies from a test design 
perspective and concludes that test design plays a critical role in defect detection capability and rate. 
Automated testing is another method that promises greater testing coverage in shorter test cycles 
(Shahamiri et al., 2009) and has been proposed as a method to minimise costs (Ramler and 
Wolfmaier, 2006). Bertolino (2007) states that test automation is critical to “cost-effective test 
engineering.” Factors such as test design (Rothermel et al., 2004) and test oracles (Memon and Xie, 
2005) are presented as means of increasing the effectiveness of software testing. Smoke testing is 
presented as an example of a test approach used to detect defects early in the software development 
lifecycle (Memon et al., 2003). 
 
The following discussion addresses the research sub-questions 7 and 8 by reviewing test design with 
respect to regression test selection methods; two test selection methods (test case prioritisation and 
test suite reduction); test oracles and automated testing are discussed. Smoke testing is presented as 
an example of a software testing approach that finds a significant amount of defects early in the 
software development life cycle. 

2.3 Test design 
Rothermel et al., (2004) discusses four regression test methodologies from a test design perspective. 
Under experimental conditions two design factors are considered: 
 Test suite granularity which is pertinent to the test case size (granularity) and pertains to the 

applied input count per test case.  
 Test input grouping which is pertinent to test case content and pertains to the “heterogeneity or 

homogeneity” between test case inputs. 



Grafton Whyte and Donovan Lindsay Mulder 
 

www.ejise.com 257 ISSN 1566-6379 

Two null hypotheses were used to evaluate the impact of test design on the regression test 
methodologies. These are: 
 H1: “test suite granularity does not have a significant impact on the costs and benefits of 

regression testing techniques” 
 H2: “test input grouping does not have a significant impact on the costs and benefits of regression 

testing techniques” 
H1 was rejected while H2 could not be completely rejected (only in two cases it could be partially 
rejected). 
 
The four methodologies investigated were “retest-all, regression test selection, test case prioritisation, 
and test suite reduction”. All four were shown to have increased cost effectiveness, defect detection 
capability and reduced test execution time with the application of relevant test case design. Rothermel 
et al., (2004) highlights the cost-benefit trade-offs associated with test design with respect to these regression 
test selection methodologies. Granularity has a greater impact on “retest-all, regression test selection and 
test case prioritisation”; but a less significant impact on “test suite reduction”. Test input grouping had 
a greater impact on “test suite reduction” and less significant impact on “retest-all, regression test 
selection, test case prioritisation”. 
 
Coarse granularity compared with fine granularity test suites have a greater defect detection capability 
on easy to detect defects. Whereas fine granularity test suites are more capable of revealing hard to 
detect defects when compared to coarse granularity test suites. This capability of coarse granularity is 
attributed to the fact that the probability of exercising functionality that induces data state and output 
change is greater. Fine granularity test suites can better support selection and prioritisation with a 
resultant effect of reduced test execution time, increased cost effectiveness and high defect detection 
rate of hard-to-find defects. This is attributed to the support fine granularity affords test selection given 
that tests can be selected against certain criteria to achieve specific goals. See table 1. 
 
It is clear from this section that test design has a significant impact upon effective software testing as 
defined in section 2.2 and figure 2 is a basic diagram that illustrates this relationship. Rothermel et al., 
(2004) concludes that building flexibility into test suites which affords readjustment of granularity to address 
test effectiveness at any stage of testing is critical.  

 

Figure 2: Test design and impacting software testing 
A question here is what else can affect the effectiveness of test cases? Rothermel et al., (2004) 
mentions that test oracles play an important role in the cost effectiveness and the defect detection 
capability of test cases. A short discussion on test oracles is provided in the next section. 

2.4 Test oracles 
Test oracles are defined as an accepted dependable source of specified input and expected output of 
software behaviour and a means of reconciling expected and actual behaviour (Shahamiri et al., 
2009). Test oracles have a significant impact on the defect detection capability and cost effectiveness 
of a test suite (Memon et al., 2003; Memon and Xie, 2004, 2005). Small test cases impose the risk of 
weak defect detection capability on test suites. A strong test oracle counteracts this risk by enhancing 
defect detection capability (Rothermel et al., 2004).  
 
 



Electronic Journal Information Systems Evaluation Volume 14 Issue 2 2011 
 

www.ejise.com 258 ©Academic Publishing International Ltd 

Table 1: Impact of granularity on regression test methodologies: RTA, RTS, TSR and TCP 

 

However strong test oracles increases test execution time and reduces cost effectiveness (Memon 
and Qing, 2005). A weak test oracle could result in reduced test execution time though this might be 
due to misleading or incomplete oracle information. There are risks of defects not being detected. 
Memon and Qing (2005) conclude that test cases lose their defect detection capability substantially, 
through decrepit test oracles. Comprehensive test oracles employed at the end of the execution of a 
test case yields the best cost benefit ratio. Rothermel et al., (2004) state that coarse grained test 



Grafton Whyte and Donovan Lindsay Mulder 
 

www.ejise.com 259 ISSN 1566-6379 

cases minimise the impact of weak test oracles on defect detection capability. Thus test design plays 
a significant role in increasing software testing effectiveness when employing test suite reduction. 
 
Test case content is an integral component of test oracles and is commonly used to determine the 
suitability of a test case against specified test selection criteria to realise specific testing goals. Test 
oracles play a critical role in software testing effectiveness as defined in section 2.2. This relationship 
is illustrated in figure 3.  

 

Figure 3: Test oracle impacting software testing 
In the next section a short discussion on test selection criteria with respect to Test Case Prioritisation 

and Test Suite Reduction is presented. 

2.5 Test selections methods and test selection criteria 
Sampath et al., (2008) state that test case prioritization techniques minimise the impact of time 
constraints. Test suite prioritization techniques are shown to enhance the defect detection rate early 
in the development cycle compared to random test selection (Rothermel et al., 2004; Srikanth et al., 
2005a). Test cases are ordered according to some explicit criteria designed to expose defects as 
quickly as possible. These criteria could be code coverage, possibility of defect existence and defect 
detection potential (Sampath et al., 2008; Do, et al., 2008). 
 
Srikanth et al., (2005b) states that approximately 50% of all defects are generated in the requirements 
phase. In the study Srikanth et al., (2005a) assert that tests are prioritised according to requirements 
in order to detect high risk defects quickly. Prioritisations of requirements are based on four factors: 
“requirement volatility, customer priority, implementation complexity and fault proneness”. It is 
concluded that compared with random ordering of tests cases, prioritisation of requirements based 
testing increases test effectiveness which significantly contributes to the increased defect detection 
rate of high risk defects. 
 
Test suite reduction aims to remove nonessential test cases permanently while keeping the most 
effective test cases. The goal of test suite reduction is to reduce the cost of regression testing (Parse 
et al., 2009) by satisfying all test requirements with the least amount of test cases (Zhang et al., 
2008a, b). Sampath et al., (2008); McMaster and Memon (2008) state that test suite reduction 
methodologies are based on test criterion which reduces the size of the test suite without reducing 
use case delineation and defect detection effectiveness. Code coverage, functional coverage and 
defect detection capability are commonly used as test reduction criteria (Parse et al., 2009). This 
leads to reduced cost and time of test execution and test suite management (Rothermel et al., 2004). 
Zhang et al., (2008b) states that cost effective test suite reduction can be achieved through the 
optimisation of test requirements as this leads to smaller test suites. Some studies have shown that 
test suite reduction can significantly increase cost effectiveness of a test suite with minimal loss in 
defect detection capability, while others have shown that test suite reduction can significantly reduce 
the defect defection capability of reduced test suites. Discarding test cases can quickly result in a 
significant decrease in the defect detection capability of the reduced test suites. 
 
In the cases of Retest-All and Regression Test Selection as Test Selection methods, Retest-All 
always as the name indicates, selects all test cases; Regression Test Selection methods assume that 
test cases that do not test changed functionality will not detect defects (Engström, 2010), therefore 
the the test selection criteria would be ‘select all test cases that test changed functionality’. 
 



Electronic Journal Information Systems Evaluation Volume 14 Issue 2 2011 
 

www.ejise.com 260 ©Academic Publishing International Ltd 

In conclusion test selection criteria impact the effectiveness of test selection methods from the 
perspective of cost, time, defect detection rate and capability. Test selection methods in turn impacts 
upon software testing effectiveness as defined in section 2.2. Test cases impact software testing 
effectiveness through its relationship with test selection criteria from the perspective of test case 
relevance. This relationship is illustrated in figure 4.  

 

Figure 4: Test selection criteria impacting test selection, test cases and software testing effectiveness 
So far we have considered test suite construction methodologies (test tools). However, these test 
tools are not exclusive to manual testing. They are also used in automated test suite construction. In 
the following section we discuss automated testing from a test coverage and test execution rate 
perspective. Smoke testing is also discussed as a quick and cost effective approach for achieving 
rapid defect detection early in the development cycle. Both are considered to be test tools. 

2.6 Automated testing 
Karhu et al., (2009) states that automated software testing is the process of automating tasks that 
comprise software testing. These tasks are processes such as test data generation; test script 
development and execution; verification and validation of test requirements and the implementation of 
test automation tools. 
 
Shahamiri et al., (2009) argues that test automation has been one method used to decrease the costs 
of software testing. This is supported by Ramler and Wolfmaier, (2006) and Karhu et al., (2009) who 
also states that the automated testing can be used in place of manual testing when time is a 
constraint. This is further supported by Zhu et al., (2006) who states that in order to reduce the costs 
and improve software testing effectiveness it is critical to automate the testing process. 
 
Automation of regression testing is seen as a means of realising increased efficiency within the 
software testing process. Harman, (2008) states is it critical to automate the generation of test data in 
order to achieve cost effectiveness in software testing. However it has not been proven in research 
that it is possible to automate all oracle activities (Shahamiri et al., 2009). 
 
Given that automated testing if implemented correctly speeds up test execution and defect detection 
rate, it will therefore impact upon software testing effectiveness as defined in section 2.2. 

2.7 Smoke testing 
Smoke testing is used to detect defects early in the software development lifecycle (Memon et al., 
2003). It is widely accepted that early detection of defects leads to: 
 Lower defect fixing costs 
 Lower costs of formal testing 
 Reduced cost of execution time of formal testing further down the line 
 Enhanced software quality 
 Risk minimization 
Memon and Xie (2004) conclude that: 



Grafton Whyte and Donovan Lindsay Mulder 
 

www.ejise.com 261 ISSN 1566-6379 

 For the majority of applications smoke tests are able to defect greater than 60% of defects. 
 A substantial proportion of code can be tested by small (1 to 3 events) smoke tests. 
 Large smoke tests with more events are able to detect more faults than small smoke tests. 
 Smoke test effectiveness is significantly impacted upon by the test oracle. 
 Application of a complete test oracle at the end or final event of a smoke test case yields the best 

balance of cost effectiveness and defect detection capability. 
Smoke testing has the potential to dramatically improve the effectiveness of software testing as 
defined in section 2.2. Figure 5 illustrates the relationship between test selection criteria, test 
execution methods (of which smoke testing is an excellent example) and software testing 
effectiveness. 

 

Figure 5: Test selection criteria impacting test execution and software testing effectiveness 

2.8 Conclusion of the literature review 
From the literature it is concluded that: 
 The skill of human resources, project size, inadequate requirements, software testability, time, 

cost and test design are test constraints falling into the categories of time, cost and skills.  
 Retest-all, regression test selection, test case prioritisation, test suite reduction, smoke testing, 

test automation, test oracles and test design are determined to be test tools used to minimise the 
impact test constraints on software testing effectiveness. 

 Test selection criteria such as code coverage, possibility of defect existence, defect detection 
potential, test case design (test case content and size); requirement volatility, customer priority, 
implementation complexity and fault proneness are identified as test selection criteria which can 
support test case prioritisation, regression test selection and test suite reduction. 

 These test tools and test selection criteria were found to directly impact test effectiveness through 
four aspects which featured prominently in the reviewed literature; these are (a) defect detection 
capability, (b) defect detection rate, (c) cost effectiveness and (d) test execution time. 

The Software Test Effectiveness Model (figure 6) serves as a summary of the literature review. The 
model combines the sub models depicted in figures 2, 3, 4 and 5. This model summarises the 
relationship between Test Tools (Test Selection Criteria, Test Selection Methods, and Test Execution 
Methods) and Test Effectiveness as conceptualised for the purpose of this research. Derived from the 
ideas and concepts discussed in the literature review, this model provides a visual map of how all the 
test tools and test selection criteria fit together to form a software testing approach and how these 
factors collectively can enhance effective software testing. 
The Software Test Tool model works as follows: the Test Selection Criteria impacts upon the 
effectiveness of the Test Selection Methods which in turn impacts effective software testing. Test 
Selection Criteria applied to Test Cases impacts upon effective software testing. Test Design and 
Test Oracles impacts upon the defect detection rate and capability of Test Cases which in turn 
impacts upon effective software testing. Test Selection Criteria impacts the effectiveness of Test 
Execution Methods which in turn impacts upon effective software testing. 



Electronic Journal Information Systems Evaluation Volume 14 Issue 2 2011 
 

www.ejise.com 262 ©Academic Publishing International Ltd 

 

Figure 6: Software test effectiveness model (summary of the literature review) 
The literature review answered the research sub-questions 2 to 8 from a theoretical perspective. In 
the following sections research sub questions 6, 7 and 8 are again answered, but from the 
perspective of software testing practitioners. 

3. Research methodology 
The ideas discussed in the literature review embody the Goal-Question Metric Approach template 
proposed by Basili et al., (1994): They propose analysing software testing tools, software test 
selection criteria and software test constraints for the purpose of knowing which software testing tools 
and test case selection criteria or a combination thereof increases software test effectiveness in the 
presence of software test constraints; with respect to their usage and possible software testing 
improvement potential from the view point of software testing professionals. 
 
There are a plethora of test tools and test selection criteria in the current literature that can arguably 
minimise the negative impact of test constraints on test effectiveness. The usage of these test tools 
and test selection criteria differ widely, while information about the actual usage in the presence of 
test constraints in project situations seems to be missing. To assess the extent to which test tools 
minimise the negative impact, a research instrument was needed that could be measure the 
perceived impact of test tools on test effectiveness in the presence of test constraints. No such 
instrument was found in the literature. Most if not all of the research in the literature dealt with test 
tools used under experimental conditions and not in real projects. Also it is not certain how these test 
tools and test selection criteria would contribute to overall test effectiveness in live projects. Therefore 
a research instrument was developed based on test tools and test selection criteria found in the 
literature and that could be used to measure the perceived impact on actual projects.  
A survey questionnaire consisting of closed questions was used as the research instrument. 
Quantitative data was collected. The research constructs are test tools, test case selection criteria, 
test constraints and test effectiveness. The survey was designed to elicit data from a practitioners’ 
perspective. The aim was to identify the perceived impact (a) test tools have on test effectiveness, (b) 
test selection criteria on test effectiveness, (c) test constraints on test effectiveness and (d) the actual 
effectiveness of testing activities. The research instrument was piloted using 2 cases. The pilot study 
was interview based in order to gauge first-hand the effectiveness of the survey instrument. The 
instrument yielded coherent results with minor modifications. During the pilot it became evident that 
due to the wide range of experience held by the respondents each expert could provide data on 2, 3 
or more projects. The question whether such a move would compromise the study was considered 
and rejected. Largely because the evidence suggested that software testing professionals tended to 



Grafton Whyte and Donovan Lindsay Mulder 
 

www.ejise.com 263 ISSN 1566-6379 

select tests based on the criteria prevailing within a project environment, rather than just applying the 
same test tools for every project. This was also demonstrated by the range of tools and techniques 
that came under investigation in this research.   
 
The research population is all software testing professionals in the world. However it is not assumed 
that statistical relevant results with high external validity will be obtained due to the fact that 
convenience sampling was used to determine the sample from the population.  
 
One of the co-author (Donovan Mulder) throughout his career in software testing has made contact 
with many software testing professionals and is a recognised professional himself. These contacts 
were made mostly through software testing seminars, conferences and the professional environment. 
The contacts represent various industries such as software testing consultancies, professional 
services, software development, telecommunications, banking, finance, investment banking, retail and 
energy. Some have recent experience using the outsourced model, some have worked their way 
through the ranks from software tester to software test manager, and some are published authors of 
software testing books and peer reviewed articles. The questionnaire was sent to this sample. 
 
Each respondent was asked to provide data for three projects. Each project was treated as a single 
case. In total 43 cases were reported on by the respondents. The survey questionnaire was sent to 18 
members of the sample of which 2 did not respond in time giving a total of 16 responses (88.9%). Of 
the 47 cases received only 43 were deemed useable as the value of software test effectiveness was 
omitted in the 4 cases. Respondents were located in geographically dispersed locations (USA, 
England, Ireland, France, South Africa, India and Australia). The predominant roles were test 
managers and test leads (see figure 7). The case studies covered a range of industries with financial 
services and telecoms dominating (see figure 8). 

 

Figure 7: Distribution of roles 

3.1 Validity 
Construct Validity: Observations were based on the respondents experience and as such might have 
led to some differences in interpretation, to mitigate this effect definitions of all test variables were 
defined in the questionnaire. 
 
External Validity: 43 cases (from 16 software testing professionals) were collected in this research. 
The results can be generalised to a certain extent as the cases are from different industries and from 
geographically dispersed locations (even from the same person as these professionals often operate 
internationally). Although convenience sampling was used to select respondents due to the dispersed 
nature of the sample it can be considered a fair representation of the professional population.  
 



Electronic Journal Information Systems Evaluation Volume 14 Issue 2 2011 
 

www.ejise.com 264 ©Academic Publishing International Ltd 

 

Figure 8: Distribution of industries 
Internal Validity: The survey questionnaire was designed with a certain goal in mind; there were no 
extraneous questions therefore, it is reasonable to conclude that the instrument had internal validity.  

3.2 Reliability 
Golafshani (2003), asserts “the extent to which results are consistent over time and an accurate 
representation of the total population under study is referred to as reliability and if the results of a 
study can be reproduced under a similar methodology, then the research instrument is considered to 
be reliable.” This definition is supported by Miyata and Kai (2009). The survey tool is based upon the 
Goal-Question Metric Approach template proposed by Basili et al., (1994), the tool demonstrated 
acceptable levels of reliability in their research therefore, reliability is assumed. 

4. Research results 
According to the Goal-Question Metric approach (Basili et al.1994) for measurement to be useful from 
an organisational view point it must be goal driven and specific. The purpose of measurement in this 
research is to identify the testing tools most likely to overcome organisational constraints and yield 
optimal test effectiveness. 
 
From the outset two goals were set for this research: 
 Identify individual Test Tools (TT) and Test Selection Criteria (TSC) most likely to yield best Test 

Effectiveness (TE). It was determined that the best statistical approach for identifying these 
constructs would be correlation analysis. 

 Identify the combination of Test Tools (TT) and Test Selection Criteria (TSC) most likely to yield 
best Test Effectiveness (TE). It was determined that the best statistical approach for identifying 
these constructs would be multiple regression analysis. 

4.1 Descriptives 
Constructs for this research were organised into three construct groups: 
 
Software Test Tools (TT) – Table 2.0 lists each tool as presented to respondents, a definition was 
also added to ensure a common understanding. Tools are listed here with group descriptions where 
appropriate. Respondents were asked to rate for each project whether the test tool increased test 
effectiveness. Their responses were graded on a Likert scale of 1 to 5 denoting ‘complete 
disagreement’ to ‘complete agreement’, respectively. Sample size (N=43) in every case. 
 



Grafton Whyte and Donovan Lindsay Mulder 
 

www.ejise.com 265 ISSN 1566-6379 

Table 2: Software test tools 

 
Software Test Selection Criteria (TSC) – Table 3.0 list each test selection criteria. Respondents 
received them with definitions and were asked to rate projects on each criterion; whether these test 
selection criteria increase software test effectiveness. Responses were graded on a Likert scale of 1 
to 5 denoting ‘no increase’ to ‘significantly increased’, respectively. 
 
Table 3: Software test selection criteria 

 
Test Constraints (TC) – Table 4 list the main test constraints encountered by test projects, again 
respondents were asked to rate projects on each criterion, whether these test constraints hindered 
software test effectiveness. Responses were graded on a Likert scale of 1 to 5 denoting ‘no impact’ to 
‘significantly impacted’, respectively. 
 
 
 
 



Electronic Journal Information Systems Evaluation Volume 14 Issue 2 2011 
 

www.ejise.com 266 ©Academic Publishing International Ltd 

Table 4: Test constraints 

 

The relationship between these variables and test effectiveness can be represented in the following 
linear function: 
 
Test effectiveness (TE) = Test Tools (TT) + Test Selection Criteria (TSC) – Test Constraints (TC) 
Subsequent correlation and regression tests explored the applicability of this function. 

4.2 Goal 1 - correlation tests 
Pearson correlation was run for each of the constructs independently (assuming two of the three 
constructs were zero) to see which of the underlying variables correlates with the construct Test 
Effectiveness (TE).  
 
The results from Table 5 suggest that regression testing selection (TT4) and smoke testing (TT10) 
correlate strongly with test effectiveness (TE), with 54% and 44% of the variability in TE explained by 
these two variables, with both achieving significance levels in the 99 percentile, suggesting these 
results are very reliable. Two further variables, test case prioritisation (TT7) and automated testing 
(TT8) correlate less strongly with TE (35% and 38%, respectively), but still achieve significance levels 
in the 95 percentile. 
 
Table 5: Test tools (TT) correlated with TE 

 

From Table 6 we note that one variable, defect detection capability (TSC3), achieved correlation of 
39% at significance levels in the 99 percentile (0.010). Other variables that achieved high significance 
levels in the 95 percentile are functional coverage, customer priority, test case content and no test 
selection criteria (test all) with respective correlations of 31%, 35%, 31% and 34%. 
 
 
 
 



Grafton Whyte and Donovan Lindsay Mulder 
 

www.ejise.com 267 ISSN 1566-6379 

Table 6: Test selection criteria (TSC) correlated with TE 

 
There were no significant correlations with any variables in the test constraint construct (TC). 

4.3 Goal 2 – multiple regression testing 
Having identified variables to emerge from independent tests of association with Test Effectiveness, 
attention was turned to testing the linear function in totality using multiple regression analysis to see if 
the variables that emerged in the correlation test would hold or would new variables emerge as 
predictors of test effectiveness. 
 
Data for the model were analysed using linear multiple regression analysis. The procedure estimates 
the coefficients (beta) of one or more independent variables to predict (R²) the value of a single 
dependent variable. Variables are systematically entered and removed from the equation using the 
stepwise method to determine the line of best fit. 
 
The model depicted in table 7 suggests that 48% of the variability in the construct Test Effectiveness 
(TE) is explained by the variables TT4, TT10 and TSC13. The proportion that each of the independent 
variables explain is indicated by their beta percentages, 46%, 34% & 33% respectively. 
Table 7: Linear regression model 

 

5. Discussion 
Test tools and test selection are applied quite extensively in the test cases. Given the diversity of the 
population it can be assumed this is likely to be the case for the Software Testing industry globally. 
This indicates that software testing practice is becoming more rigorous and formalised and to a 
certain extent scientific, which is a good sign for the software development industry and business as a 
whole. 
 



Electronic Journal Information Systems Evaluation Volume 14 Issue 2 2011 
 

www.ejise.com 268 ©Academic Publishing International Ltd 

The results suggest regression test selection (TT4) and smoke testing (TT10) significantly, and to a 
lesser extent test case prioritisation (TT7) and automated testing (TT11) correlated with Test 
Effectiveness. These Test Tools can each be applied individually to testing activities in order to 
increase Test Effectiveness. 
 
In practice these Test Tools are most associated with increased Test Effectiveness and their use is 
more likely to increase the probability that a software development project will meet its strategic goals. 
 
Smoke testing is used to detect defects before more expensive formal testing. Automated testing 
significantly reduces test execution time and also increases the rate of functional coverage during 
testing thus reducing test cycle time. Individually the application of these Test Tools will lead to early 
detection of defects, reduced cost of testing, quicker product time to market and increased software 
quality. 
 
Regression test selection and test case prioritisation are dependent upon adequate test selection 
criteria. One test selection criterion that correlated strongly with Test Effectiveness is defect detection 
capability (TSC3). Other test selection criteria that correlated with slightly less significance are 
functional coverage (TSC2), customer priority (TSC7), test case content (TSC11) and no test 
selection criteria (TSC13). Defect detection capability (TSC3) is an imperative design consideration. It 
is the make or break factor in the realisation of software quality through increased test effectiveness. 
It plays a pivotal role in reducing the risk of software going to market with undetected defects. 
Maximised functional coverage (TSC2) during test execution reduces the risk of parts of a software 
system being untested after it has been released to market. Test case content (TSC11) directly 
relates to functional coverage and as such is used to measure functional coverage of software testing, 
thus giving the business a risk based view that can be used to determine the readiness of a software 
system before release to market. Customer priority (TSC7) allows software development businesses 
to quickly meet the most important goals of the customer. No test selection criteria (TSC13) translates 
into testing of the entire software system thereby mitigating all risk posed by inadequate functional 
coverage. However this is an expensive approach to software testing and requires no or very little 
time constraints. 
 
Individually these Test Selection Criteria increase software quality, customer satisfaction thereby 
possibly enhancing and preserving a business’s good reputation. 
 
Applying multiple regression analysis to the combined Test Tools (TT) and Test Selection Criteria 
(TSC) identified the combined variables of regression test selection (TT4), smoke testing (TT10) and 
no test selection criteria (TSC13) to have the most significant impact upon Test Effectiveness. 
 
The data analysis strongly suggested a saturation point in the application of the number of Test Tools 
and Test Selection Criteria, exactly at which point this achieved is debatable but initial indications 
from this research suggests after a 80% level of Test Effectiveness has been achieved. The total 
number of Test Tools and Test Selection Criteria in this study is twenty-three (23). Correlation and 
multiple regression analyses reduced this to nine and three respectively, suggesting a high-degree of 
over-lap between tests. In business terms it would seem not to make sense to try and achieve levels 
of Test Effectiveness beyond the 80 percentile point. 
 
Interestingly, neither correlation nor multiple regression analyses revealed a significant relationship 
between Test Constraints and Test Effectiveness. Given that organisational constraints are always 
uppermost in practitioner’s minds. One reason for this absence could be due to the fact that the 
sample was made up of seasoned test experts, who through their experience have learnt how to 
mitigate the impact of Test Constraints on Test Effectiveness. 

6. Conclusion 
The aim of this paper was to identify from the plethora of Test Tools used in practice: 
 Which individual test tools are most likely to yield optimal test effectiveness and, 
 Which combination of test tools is most likely to yield optimal test effectiveness and mitigate the 

effect of test constraints 
Data from forty three cases across various industries and countries were collected to identify the 
current application of Test Tools in practise. The research was designed using the Goal-Question 



Grafton Whyte and Donovan Lindsay Mulder 
 

www.ejise.com 269 ISSN 1566-6379 

Metric approach and the data analysed using correlation analysis to identify individual Test Tools and 
Test Selection Criteria most closely associated with Test Effectiveness and; multiple regression 
analysis to identify the combination of Test Tools and Test Selection Criteria that would lead to 
optimum Test Effectiveness. 
 
The correlation analysis identified nine variables; Four Test Tools (TT): regression test selection 
(TT4), smoke testing (TT10), test case prioritisation (TT7) and automated testing (TT11) and, five Test 
Selection Criteria (TSC): defect detection capability (TSC3), functional coverage (TSC2), customer 
priority (TSC7), test case content (TSC11) and no test selection criteria (TSC13), allowing test 
practitioners to pick and mix the various approaches given the specific constraints. The multiple 
regression analysis identified the combined variables of regression test selection (TT4), smoke testing 
(TT10) and no test selection criteria (TSC13) to have the most significant impact upon Test 
Effectiveness. 
 
For practitioners the main value of this research is that it begins to spell out which individual and 
combined test tools will most likely assist in achieving optimal test effectiveness in the presence of 
test constraints. Based on the study results approximately 50% of the test effectiveness results are 
achieved through a combination of regression test selection, smoke testing and no test selection 
criteria. 
 
Individually regression test selection and smoke testing correlated reliably with test effectiveness and 
less significantly test case prioritisation and automated testing. Of the test selection criteria: defect 
detection capability, functional coverage, customer priority, test case content and no test selection 
criteria (test all) correlated reliably with test effectiveness.  
 
In practice this suggest that smoke testing should be used for early detection of major defects after 
which regression test selection should be applied to the software under test and that no test selection 
be applied to test cases, therefore test everything. This only makes sense when there are no time 
constraints. Smoke testing is commonly used to determine if a system is ready for formal testing. This 
assists with effective resource allocation. If smoke testing is part of a build process that is run daily or 
nightly the project benefits from early detection of defects. This reduces the cost of defect resolution. 
 
Testing everything is an approach best used for major software releases and mission critical 
applications. Though this is expensive it mitigates most of the risk of defects ‘making it out into the 
wild’ which could result in damaged reputation and possible significant economic loss and even loss 
of life. During minor releases or when time, cost or both are constraints it does not make economic 
sense to do exhaustive testing with full functional coverage. In this case one or more of the test 
selection methods supported by appropriate test selection criteria identified through the correlation 
analysis should be applied. This will lead to reduced test execution costs and time with increased 
defect detection rate in system under test. Regression test selection aims only to run tests where 
changes have been made therefore as test selection criteria functional coverage and test case 
content makes sense. Test case prioritisation is used to achieve specific goals such as find as many 
defect as possible or test critical customer components in these cases defect detection capability and 
customer priority as test selection criteria makes sense. Automated testing is a good option to 
decrease test execution time. However it has become frequent in literature to read about failed 
automated testing initiativesError! Reference source not found. ; Ramler and Wolfmaier 2006). This 
has not been discussed in this paper however practitioners will do well to do thorough investigation in 
automated testing before embarking upon a test automation endeavour.  
 
Areas for further research: 
 A saturation point in the application of Test Tools and Test selection criteria is alluded to in this 

paper, more evidence to support this idea is required and to pinpoint the threshold. This will 
enable test practitioners achieve greater precision when trading-off the cost of further software 
testing with relative benefits. 

 Of the research sample the majority of test cases were overwhelmingly successful, further 
research needs to be conducted on cases which are not successful to ascertain if the emergent 
variables remain consistent.  



Electronic Journal Information Systems Evaluation Volume 14 Issue 2 2011 
 

www.ejise.com 270 ©Academic Publishing International Ltd 

References 
Baresi, L., Pezze`, M. 2006, 'An Introduction to Software Testing', Electronic Notes in Theoretical Computer 

Science, 2006. 
Basili, V.R. Caldiera, G., Rombach, H.D. 1994, 'The Goal Question Metric Approach'. 
Berner, S., Weber, R., Keller, R.K. 2005, 'Observations and Lessons Learned from Automated Testing', Zühlke 

Engineering AG Zürich-Schlieren Switzerland, 2005. 
Bertolino, A. 2007, 'Software Testing Research: Achievements, Challenges, Dreams', Future of Software 

Engineering (FOSE'07), 2007. 
Bryce, R.C., Colbourn, C.J. 2005, 'Test Prioritization for Pairwise Interaction Coverage', A-MOST’05, Copyright 

2005 ACM 1-59593-115-5/00/0004, St. Louis, Missouri, USA. 
Do, H., Mirarab, S., Tahvildari, L. 2008, 'An Empirical Study of the Effect of Time Constraints on the Cost-

Benefits of Regression Testing', SIGSOFT 2008/FSE-16, November 9–15, Copyright 2008 ACM 978-1-
59593-995-1, Atlanta, Georgia, USA. 

Engel, A., Last, M. 2007, 'Modeling software testing costs and risks using fuzzy logic paradigm', The Journal of 
Systems and Software, 2007. 

Engström, E 2010, 'Regression Test Selection and Product Line System Testing', 2010 Third International 
Conference on Software Testing, Verification and Validation, IEEE Computer Society, Paris. 

Golafshani, N 2003, 'Understanding Reliability and Validity in Qualitative Research', The Qualitative Report, vol 8, 
no. 4, pp. 597-607. 

Harman, M. 2008, 'Open Problems in Testability Transformation', IEEE International Conference on Software 
Testing Verification and Validation Workshop (ICSTW'08), IEEE Computer Society. 

Huang, C-Y 2005, 'Performance analysis of software reliability growth models with testing-effort and change-
point', The Journal of Systems and Software, vol 76, pp. 181 - 194. 

Karhu, K., Repo, T., Taipale, O., Smolander, K. 2009, 'Empirical Observations on Software Testing Automation'. 
McMaster, S., Memon, A.M. 2008, 'Call-Stack Coverage for GUI Test Suite Reduction', IEEE Transactions on 

Software Engineering, 2008. 
McMinn, P 2009, 'Search-Based Failure Discovery using Testability Transformations to Generate Pseudo-

Oracles', Proceedings of the 11th Annual conference on Genetic and evolutionary computation, ACM, 
Montreal Quebec, Canada. 

Memon, A.M., Bananerjee, I., Hashmi, N., Nagarajan, A. 2003, 'DART: A Framework for Regression Testing 
Nightly/daily Builds of GUI Applications', Proceedings of the International Conference on Software 
Maintenance (ICSM’03), IEEE Computer Society. 

Memon, A.M., Xie, Q. 2004, 'Empirical evaluation of the fault-detection effectiveness of smoke regression test 
cases for GUI-based software', Proceedings of the 20th International Conference on software Maintenance 
(ICSM 2004), Chicago, USA. 

Memon, A.M., Xie., Q. 2005, 'Studying the Fault-Detection Effectiveness of GUI Test Cases for Rapidly Evolving 
Software', IEEE Transactions on Software Engineering, 2005. 

Miyata, H & Kai, I 2009, 'Reconsidering Evaluation Criteria for Scientific Adequacy in Health Care Research : An 
Integrative Framework of Quantitative and Qualitative Criteria', International Journal of Qualitative Methods, 
vol 8, no. 1, pp. 64-75. 

Parse, S., Khalilian, A., Fazlalizadeh, Y. 2009, 'A New Algorithm to Test Suite Reduction Based on Cluster 
Analysis', 2009. 

Persson, C & Yilmaztürk, N 2004, 'Establishment of automated regression testing at ABB: industrial experience 
report on 'avoiding the pitfalls'', Proceedings. 19th International Conference on Automated Software 
Engineering, 2004., IEEE Computer Society, Linz, Austria. 

Ramler, R., Wolfmaier, K. 2006, 'Economic Perspectives in Test Automation: Balancing Automated and Manual 
Testing with Opportunity Cost"'. 

Rothermel, G., Elbaum, S., Malishevsky, A.G. , Kallakuri, P., Xuemei Q. 2004, 'On Test Suite Composition and 
Cost-Effective Regression Testing', ACM Transactions on Software Engineering and Methodology, 2004. 

Sampath, S., Ren´ee C. B., Gokulanand, V., Vani K., A. Gunes¸ K. 2008, 'Prioritizing User-session-based Test 
Cases for Web Applications Testing', International Conference on Software Testing, Verification, and 
Validation, IEEE Computer Society. 

Shahamiri, S.R., Kadir, W.M.N.W, Mohd-Hashim. S.Z. 2009, 'A Comparative Study on Automated Software Test 
Oracle Methods', Fourth International Conference on Software Engineering Advances, IEEE Computer 
Society. 

Srikanth, H., Williams, L. 2005, 'On the Economics of Requirements-Based Test Case Prioritization', EDSER'05, 
Copyright 2005 ACM 1-59593-118-X/05/0005, St. Louis, Missouri, USA. 

Srikanth, H., Williams, L., Osborne, J. 2005, 'System Test Case Prioritization of New and Regression Test 
Cases', International Symposium on Empirical Software Engineering, IEEE Computer Society. 

Vallespir, D., Herbert, J. 2009, 'Effectiveness and Cost of Verification Techniques', IEEE Computer Society, 
Mexican International Conference on Computer Science. 

Zhang, R., Jiang, J., Yin, J., Jin, A., Lou, J., Wu, Y. 2008, 'A New Method for Test Suite Reduction', The 9th 
International Conference for Young Computer Scientists, IEEE Computer Society. 

Zhang, X., Xu, B., Chen, Z., Nie. C., Li, L. 2008, 'An Empirical Evaluation of Test Suite Reduction for Boolean 
Specification-based Testing', The Eighth International Conference on Quality Software, IEEE Computer 
Society. 


	Introduction
	Literature review
	Terminology
	Effective software testing
	Test design
	Test oracles
	Test selections methods and test selection criteria
	Automated testing
	Smoke testing
	Conclusion of the literature review

	Research methodology
	Validity
	Reliability

	Research results
	Descriptives
	Goal 1 - correlation tests
	Goal 2 – multiple regression testing

	Discussion
	Conclusion
	References

