
ISSN 1566-6379 13 ©Academic Conferences Ltd
Reference this paper as:
Clutterbuck, P., Rowlands, T. and Seamons, O. “A Case Study of SME Web Application Development Effectiveness via
Agile Methods.” The Electronic Journal Information Systems Evaluation Volume 12 Issue 1 2009, pp. 13 - 26, available
online at www.ejise.com

A Case Study of SME Web Application Development
Effectiveness via Agile Methods
Peter Clutterbuck, Terry Rowlands and Owen Seamons
University of Queensland, Brisbane, Australia
p.clutterbuck@business.uq.edu.au
t.rowlands@business.uq.edu.au
o.seamons@business.uq.edu.au

Abstract: The development of Web applications is an important focus of the modern information enabled organization –
whether the Web application development is in-house, outsourced, or purchased as ‘commercial-off-the-shelf’ (COTS)
software. Traditionally Web application development has been delivered via the dominant waterfall system. The waterfall
system relies upon well-defined governance structures, linear phases, gating, and extensive reporting and sign-off
documentation. An increasing number of development stakeholders criticise the waterfall system for web application
development. The criticisms include a disproportionate focus on governance and process at the direct expense of
flexibility and, most importantly, reduced productivity. One consequence of these criticisms is the increasing adoption of
Web application development via agile-system methods. This agile-system approach centres upon smaller design teams,
fewer development phases, and shorter development time tables.

This case study examines the implementation of the agile-system approach as used by a Small-to-Medium Enterprise
(SME) software developer. The case study data collection involves interviews and observations across three different
SME sources: project managers, Web application programmers, and customers. The case study analysis synthesises
the experiences of these managers, programmers and customers to produce an overall assessment of the usefulness of
Web application delivery via agile-system methods. The major conclusions from the case study are that a ‘default’ agile-
system approach may be tailored or fine-tuned to fit an individual developer’s software process. This tailoring is based
upon the developer’s assessment of best practice from the overall agile-system methodology. This tailoring, however,
delivers a software development process that exhibits efficiencies and risks. The efficiencies include a more fulfilling role
for each development team member, greater richness and continuity in design, a simple management system that
delivers key information on a timely basis to all stake-holders, and increased business and technical quality within the
delivered application, and a relatively low cost for actioning changes to user requirements. The risks pivot upon
experience levels, skills levels, and the quality of interaction within – and between - both the development team and
customer organization.

Keywords: project management, information systems management, methodology, agile-system

1. Introduction
Information system (IS) development is a much studied, heavily practised activity. The term ‘IS development’
is used in this paper to describe the overall evolutionary life-cycle of an IS. That is, capturing and validating
user requirements, estimating feasibility, analysis, design, testing, implementation and maintenance. The
term ‘method’ is used in this paper to denote an overall strategy that is used to guide and manage an IS life-
cycle.

As outlined in (Boehm, 2004), the history of IS development has been characterised by three distinct
generations or paradigms of IS development methods – and consequential ‘method wars’. The paradigm
comprising structured analysis and design methods initially found its voice in methodologists such as Tom
Demarco, Ed Yourdon, Larry Constantine, Harlan Mills, Michael Jackson, and many others. The subsequent
era of object-oriented analysis and design methods found its voice in proponents such as Jim Rumbaugh,
Ivar Jacobson, Peter Coad, and many others. The current ‘post-dot-bomb era’ has seen a new method
paradigm emerge – championed by individuals such as Kent Beck, Martin Fowler, Robert Martin, and many
others. This new method paradigm is referred as ‘agile methods’.

The current dominant software development paradigm has evolved from the structured analysis and design
methods of Demarco et al. and the object-oriented analysis of Rumbaugh et al. This paradigm is referred to
as the traditional approach or waterfall model and is characterized as plan-driven and process oriented.
(Boehm, 2004) states that the traditional approach is perhaps best exemplified by the Capability Maturity
Model for Software (SW-CMM) (Paulk, 1993) and its evolutionary successor the Capability Maturity Model
Integration (Version 1.2) described in (Chrissis, 2006). As stated in (Boehm, 2004), “Thousands of
organizations have embraced the SW-CMM and have found that their software development became less
chaotic.”

mailto:p.clutterbuck@business.uq.edu.au
mailto:t.rowlands@business.uq.edu.au
mailto:o.seamons@business.uq.edu.au

Electronic Journal Information Systems Evaluation Volume 12 Issue 1 2009 (13-26)

During the post 2000 era, the environment in which software is conceived, specified, created, and
maintained continues to change rapidly and significantly. Software systems continue to grow in size and
complexity. Software system delivery is now achieved through a broad mix of in-house, outsourced, and
commercial-off-the-shelf (COTS) development strategies. Software is truly ubiquitous – it is routinely found in
our business, leisure, and home lives. Software quality, ease of use, and time-to-market are very important
to both developers and users. Very significant emphasis has been placed on the demand for flexible
development methods (Lee, 2005) that can handle this rapid environmental change and increasing
complexity (Lycett, 1999). This view is echoed in (Boehm, 2004) who states “In the past few years, the
mainstream software development community has been challenged by a counter-culture movement that
addresses change from a radically different perspective. This new approach, called ‘agile’ by its proponents,
is best exemplified by their Agile Manifesto:”

We have come to value:
Individuals and interactions over process and tools;
Working software over comprehensive documentation;
Customer collaboration over contract negotiation;
Responding to change over following a plan.
That is, while there is value in the items on the right, we value the items on the left more.

(Boehm, 2004) describes agile methods as encouraging “programmers to shed their heavyweight process
chains, embrace change, and escape into agility. Advocated methods have short cycle times, close
customer involvement, and an adaptive rather than predictive mind set.” (Highsmith, 1999; Fowler, 2001)
describes agile methods as a “just enough” method strategy because agile methods aim to avoid prescribing
cumbersome and time-consuming processes that add little value to the software product and actually
elongate the development process.

Whilst it is generally accepted that there are some perceived shortcomings with the traditional/plan-driven IS
development process (Grisham, 2005), it is very important to all IS stakeholders that agile methods are not
prematurely or unjustifiably seen to be the latest ‘silver bullet’ solution to existing problems in software
development. Whilst there is a growing body of research into IS development via agile methods, it would
seem that this work focuses upon large organizations and/or industrial product settings. The quantitative
survey described in (Rumpe, 2002) focused mainly on the IS developer. (Macias, 2003) compared developer
effort under both the traditional and agile methods. Productivity was investigated in (Wood, 2003), defect
management/maintenance described in (Poole, 2001), and the customising of agile methods within the
software process of Intel Ireland in (Fitzgerald, 2006).

This paper describes a Small-to-Medium Enterprise (SME) case study focusing upon the efficiency of Web
centric information system (IS) development. The case study SME implements a software process via a
combination of two agile methods (Scrum and Extreme Programming or XP). Specifically our two research
objectives were to investigate the following:

 How the methods were used in practice – with an emphasis placed on any fine-tuning or tailoring of each
method

 The efficiencies and risks of agile development as implemented within the context of the case study
SME.

This paper unfolds in the following format. Section two firstly provides an overview of currently available agile
methods, and then proceeds to describe Extreme Programming (XP) and Scrum in greater detail. Section
three discusses the research method underpinning this paper. Section four presents an analysis of the
results from this research. Section five concludes the paper.

2. Agile methods
All agile methods are described in (Abrahamsson, 2002) as displaying the following attributes:

 Incremental development: small software releases with rapid development cycles.
 Cooperative development: close customer and developer interaction.
 Method simplicity: easy to learn, modify and document.
 Adaptive development: simple and effective change management at any point within the overall software

life-cycle.

www.ejise.com ©Academic Conferences Ltd 14

Peter Clutterbuck, Terry Rowlands and Owen Seamons

This section will firstly describe in overview the most commonly encountered range of agile methods. The
methods will be introduced in alphabetical order. The section will then treat in more detail the two agile
methods underpinning this research (Extreme Programming, or XP, and Scrum).

2.1 Agile methods overview
Adaptive software development: ASD (Highsmith, 2000) promotes a change-oriented strategy to the
software development of large, complex systems. The method encourages incremental and iterative
development with constant prototyping. (Abrahamsson, 2002) states that “ASD claims to provide a
framework with enough guidance to prevent projects from falling into chaos, but not too much, which could
suppress emergence and creativity.”

Agile modeling: (Ambler, 2002) describes the key points of AM as the agile practices and cultural principles.
The AM modeling practices encourage developers to produce sufficiently advanced models to meet design
needs and all documentation purposes. The cultural principles promote communication, team structure
organization and team work practices.

Crystal family: (Cockburn, 2000 and 2002) describe a framework of related methods that address the
variability of the environment and the specific characteristics of projects. The term “Crystal” is used as a
metaphor to describe the “color” and “hardness” or “heaviness” of each method. The appropriate Crystal
method is selected according to development team size and project criticality. Crystal methods share two
fundamental values: the appropriate level of effective communication and a high tolerance of change within
the project.

Dynamic systems development method: (DSDM Consortium, 1997) and (Stapleton, 1997) describe more of
a framework for developing software rather than a particular method. The five phase DSDM life cycle
provides for project management activities and risk management. (Abrahamsson, 2002) states that: “The
fundamental idea behind DSDM is that instead of fixing the amount of functionality in a product, and then
adjusting time and resources to reach that functionality, it is preferred to fix time and resources, and then
adjust the amount of functionality accordingly.” DSDM is consistently described as the first truly agile
software development method.

Feature-driven development: FDD (Palmer, 2002) focuses on simple process, efficient modeling, and short,
iterative cycles. (Boehm, 2004) describes how “FDD depends heavily on good people for domain knowledge,
design, and development. A central goal is to have the process in the background to support rather than
drive the team.” FDD does not assign collective ownership of project tasks (including code base) unlike other
agile methods including Extreme Programming. (Boehm, 2004) states that the FDD focus on architecture
and “getting it right the first time” is very much the “antithesis of XP’s collective ownership” and that “this
makes FDD strong for more stable systems with predictable evolution, more vulnerable to nonpredictable
‘architecture-breaker’ changes.”

Rational Unified Process: RUP (Kruchten, 1999) works closely with the Unified Modeling Language (UML).
Indeed RUP and UML were designed concurrently by Rational Corporation (now a division of IBM). RUP is
characterized by a large volume of process guidelines and is therefore often viewed as a plan-driven,
“heavy” process. RUP does, however, also display many agile philosophies and is therefore better classified
as a “hybrid” – incorporating ideas from the agile and disciplined/plan-driven paradigms (Boehm, 2004). RUP
addresses business workflows and development economic factors that are usually not specifically covered in
other methods. (Boehm, 2004) states that “RUP is currently being extended to address customer economics
and return-on-investment considerations.” RUP is consistently described as better suited to large projects.

2.2 Extreme programming (XP) and scrum
Section 2.1 overviewed the range of agile methods that feature most prominently within the existing software
development environment. This section will now describe the two agile methods that have been studied
within this case study research. The two methods are Extreme Programming and Scrum

Extreme Programming (XP) is the most widely recognized agile method (Boehm, 2004). XP has been
pioneered by Kent Beck and is described in (Beck, 2000) as “a light-weight methodology for small-to-
medium-sized teams developing software in the face of vague or rapidly-changing requirements”. XP
originated as a prototypical C3 payroll system development project within the Daimler-Chrysler organization.
XP is based on four values and an initial set of twelve practices. The four values are as follows:

www.ejise.com ISSN 1566-6379 15

Electronic Journal Information Systems Evaluation Volume 12 Issue 1 2009 (13-26)

 Communication: Most project problems occur because of poor communication – therefore XP
strongly promotes communication in a positive fashion.

 Simplicity: Develop the simplest product that meets the customer’s needs.
 Feedback: Developers must obtain and value feedback from the customer, from the system, and from

each other.
 Courage: Be prepared to make hard decisions that support the other principles and practices.

The twelve key practices of XP are shown in Table 1.
Table 1: XP Twelve key practices

Key Practice Explanation
The planning game A quick determination of the scope of the next software release, based on a

combination of business priorities and technical estimates. It is accepted
that this plan will probably change.

Small releases Produce a simple working system quickly, and then release new versions
on a very short cycle.

Metaphor Guide all development with a simple shared story of how the whole system
works.

Simple design The system should be designed as simply as possible at any given moment
of time.

Continuous testing (or
Test driven
development)

Programmers continually write tests, which must be run flawlessly for
development to proceed. Customers write function tests to demonstrate the
features implemented.

Refactoring Programmers restructure the system, without removing functionality, to
improve non-functional aspects, simplicity and flexibility. Refactoring
strongly focuses upon the removal of code duplication.

Pair-programming All production code is written by two programmers at one machine.
Collective ownership Any programmer can change any code anywhere in the system at any time.
Continuous Integration Integrate and build the system every time a task is completed. It is a

fundamental requirement to always have an up-to-date working prototype.
Forty hour week Work no more than 40 hours per week as a rule.
On-site customers A customer representative (i.e. a subject matter expert) works full time

within the development team.
Coding standards Adherence to coding rules that emphasise communication via program code

Scrum (Schwaber, 1995; Schwaber, 2002) is depicted in Figure 1. Scrum is a simple low overhead process
for managing and tracking software development. Scrum has a very clear project management emphasis.
Scrum is predicated on the concept that software development is not a cleanly defined process, but a series
of ‘black boxes’ with complex input/output transformations. The Scrum process begins with the creation of
the Product Backlog comprising the prioritized product features required by the customer. The next phase of
Scrum centres upon a series of 30 day Scrum Sprints. During each Sprint the Scrum team will complete a
working set of features that have been selected (during a Scrum pre-Sprint planning session) from the
overall Product Backlog. Short (e.g. 15 minute) meetings are held by the Scrum tea m on each day of the
Scrum Sprint. Each daily meeting allows the team to monitor project status and discuss problems and
issues. The conclusion of each 30 day Sprint involves the software demonstration of the product features
that have been completed during that Sprint.

www.ejise.com ©Academic Conferences Ltd 16

Peter Clutterbuck, Terry Rowlands and Owen Seamons

Figure 1: Scrum (Source: ControlChaos.com)

3. Research methodology
The objective of this research was to examine the use of agile methods within a SME software developer,
and to gain an understanding of the enabling and limiting factors associated with the usage of these agile
methods. The research study has been carried out between November 2007 and March 2008. The SME
software developer deploys a project team of seven staff (plus one consulting customer representative) to
produce software that is best characterised as web driven client service interfaces to back end database
services.

In overview, an interpretative, exploratory case study research methodology was adopted for this
investigation. An interpretive methodology is considered appropriate in relatively new and evolving fields
such as Information Systems (Walsham, 1995a, b). Within the overall IS area, agile methods have only
recently attracted research attention, and little or no research is available as to the efficiencies and risks of
agile methods within the SME software development sector. (Travers, 2001) also states that interpretivist
research is considered most appropriate when it is necessary to consider the “often complicated relationship
between people, ideas and institutions”. Case study research is comprehensively discussed in (Yin, 2003).
(Benbasat, 1987, Yin, 2003, Marshall, 1989) suggest the case study approach is appropriate where the
research has a descriptive, exploratory focus. (Yin, 2003) promotes that case studies can be very valuable in
generating an understanding of reality, and describes the single, in-depth case study as the “revelatory
case”. (Mintzberg, 1979) strongly recommends a single case study strategy. (Zelkowitz, 1998) describes how
case studies in software engineering facilitate the testing of theories and the collection of data in “an
unmodified setting”. This is also very much the view of (Kitchenham, 1995) where case studies are viewed
as “research in the typical”. The case study of this research is exploratory and therefore the results obtained
cannot be immediately generalised to any other settings beyond the studied SME and the specific
development project. Whilst this result suggests a lack of external validity within this research – it is stressed
that the exploratory nature of this investigation aims to generate findings that may subsequently be used to
generate hypotheses suitable for testing in a more quantitative fashion.

The data collection within this case study was conducted via qualitative research methods. A series of
primary and secondary personal interviews were conducted over the four months of the case study with the
SME project manager and several key project stake-holders. Primary interviews averaged two hours in
duration. Secondary interviews averaged twenty minutes duration and were used to clarify and refine issues
as they emerged. Primary interviews were semi-structured (Patton, 1990) and comprised open-ended
questions relating to the use of XP and Scrum within the overall SME software development process.
Questioning centred upon a factor listing of all individual components within the ‘default’ XP and Scrum
processes. Interviewees described how each factor list entry had been implemented within the project and

www.ejise.com ISSN 1566-6379 17

Electronic Journal Information Systems Evaluation Volume 12 Issue 1 2009 (13-26)

also assessed the enabling/limiting issues associated with the specific entry. Each interviewee was then
requested to assess each factor list entry according to the following set of ordinal values: {strongly helpful,
helpful, improvable, difficult, not-workable}. Interview transcripts were then coded and analysed using the
Glaser-Strauss’ constant comparison method (Glaser, 1967) to elicit the major efficiency and risk themes.
The summarised themes were presented to all research participants at project end to validate the semantic
analysis. These summarised themes are presented as research results in the next section.

Concurrent protocol analysis was used to investigate and quantify the cost of requirements change
(measured in effort, i.e. person/hour) occurring within the software development cycle up to (but not post)
product delivery. Concurrent protocol analysis is an empirical research method for studying the cognitive
behaviours and thought processes used by problem solvers (Ericsson, 1993). Concurrent protocols are
generated when the problem solver verbalises his/her thoughts while working on a specific task. The
verbalisations are recorded during the process and analysed at a later time. Two requirements relate to the
validity of concurrent protocol analysis. The first requirement is that the verbalisation of thoughts will not
affect the problem solving process. Whilst research continues in relation to this requirement, (Ericsson, 2003)
has concluded that concurrent verbalisation does not alter the structure of thought processes. The second
requirement is that the problem solving process has a conversational characteristic and therefore lends itself
to subsequent semantic analysis by the researcher. This requirement is met in this research by reducing the
language/protocol tokens (i.e. the words spoken and recorded) to the following simple language/protocol
described in Table 2.
Table 2: Protocol analysis verbal tokens

Date : time
started

[dd:mm and hh:mm]

Activity Type

[Design Change OR Refactoring OR Error Fix]

Activity Task

[Analysis] OR
[Coding]
If coding: [Class Name:name] [Method Name:name] [Line
Number(s):nn]

Date /time
ended

[dd/mm and hh:mm]

The verbal tokens described in bold font in Table 2 ensure that the protocol remains very lightweight, non-
intrusive upon developer concentration/thought, and easily learned. The developer verbalises the starting
date:time – then verbalises the current activity type and current activity task. If the developer verbalises
Analysis then nothing further is required until there is a change of activity – or the session ends. If the
developer verbalises Coding, then the developer verbalises the Class Name:name, Method Name:name,
and Line Number(s):nn updated. A protocol analysis session may iterate through one or more instances of
Activity Type and Activity Task. The differentiation of Analysis and Coding enables separate data capturing
for ‘thought’ process effort (i.e. Analysis) and coding effort (i.e. Coding). The developer verbalises the end
time when the session has concluded. The recorded sessions are then analysed and the relevant data
collected.

4. Research results
This section will firstly present project data to normalise this investigation within the overall paradigm of agile
method case study research. This normalisation is important because exploratory case study research
results cannot be generalised beyond the studied SME and specific project. Normalisation will mitigate this
limitation in as much as the results from this research may be compared within an overall context of agile
method case study investigation.

This section will then present the major deliverables from this research: the description of how XP and Scrum
have been tailored (i.e. fine-tuned) within the SME software developer, and the research assessment of the
overall SME software development process.

4.1 Normalisation
Normalisation of this case study is based on the Extreme Programming Evaluation Framework (XP-EF)
presented in (Layman, 2006). The XP-EF comprises eight dimensions: developmental factors, sociological
factors, project-specific factors, technological factors, ergonomic factors, geographical factors, planning
adherence metrics, and testing adherence metrics. This normalisation section will use two of these eight

www.ejise.com ©Academic Conferences Ltd 18

Peter Clutterbuck, Terry Rowlands and Owen Seamons

dimensions: sociological factors (Table 3) and project-specific factors (Table 4. It is felt that the data treated
in the remaining six dimensions will be largely covered by the results presented within the Section 4.2
(Tailoring and Research Assessment).
Table 3: Sociological factors

Sociological Context Factor Value
Team size (number of developers) 7 + 1 tester
Team education level Bachelors: 7 + 1 tester (customer/business expert)

PhD: 1
Team experience level 1 to 5 years: 6 + 1 tester (customer/business expert)

6 to 10+ years: 1
Domain expertise Medium
Language expertise Medium to High
Project management expertise High
Personnel turnover 12.5% (defined as the percentage number of weeks of

incoming new staff – relative to the overall project staffing
number of weeks)

Morale factors None (defined within this case study as personnel issues
requiring managerial or staff association intervention)

The sociological factors in Table 3 show that the project team within this case study were technical
competent and led by and experience project manager. The personnel turnover resulted from two people
leaving the project (and being replaced immediately) at the eight week mark. Morale throughout project life
was very good.
Table 4: Project specific factors

Project-Specific Context Factor Value
New and Changed User Specifications 18
Domain Web interface client – database service
Relative complexity Moderate
Total Component Classes 350
Total Component Methods 482
KLOEC (thousand lines of executable code) 71

The project-specific factors in Table 4 show a small size project of moderate complexity. New and Changed
User Specifications represent the effort expended in capturing user requirements for the software application
(i.e. business analysis/requirements engineering).

4.2 Tailoring and research assessment
This section will firstly discuss the tailoring of Scrum within the targeted SME’s software development
process. The section will then discuss the overall research assessment of the tailored Scrum/XP software
development process as measured by the investigative approaches outlined in Section 3.

Tailoring of Scrum and XP within the SME development process is shown in Figure 2.

www.ejise.com ISSN 1566-6379 19

Electronic Journal Information Systems Evaluation Volume 12 Issue 1 2009 (13-26)

Figure 2: Scrum and XP Practices as implemented within SME
This tailoring described in Figure 2 involves (1) the Scrum planning or front end stage, (2) the pre-Sprint
stage, (3) the Sprint stage (in which seven of the twelve XP practices have been incorporated), and (4) the
Scrum closure stage.
Tailoring of the Scrum planning or font end stage is as follows:

 The addition of a detailed Business Analysis of the proposed software application by the project
manager and the customer. This analysis aligns the business model, the required business functionality
and business processes (both existing and proposed) with the proposed software project automation. It
complements the Requirements Engineering that is conducted during the Scrum planning stage to
provide the developer with an overall project management context.

 The addition of Customer Designed Testing. This addition is the logical extension by the SME of ‘test
driven development’. The test suite is written by the customer (with the assistance of the project
manager) and reflects the overall business process functionality of the project deliverable.

Tailoring of the Scrum pre-Sprint planning stage is as follows:

 The addition of a Customer Designed Features Testing. The test suite is written by the customer (with
the assistance of the project manager) and tests the business process functionality of the specific project
features that have been selected for the imminent (i.e. next) Scrum Sprint. The test suite will be used
during the Sprint stage. This test suite will be complemented by the conventional unit-tests and
integration-tests that will be developed by the project developers with the aim of gauging code
integrity/correctness.

Tailoring of each Scrum Sprint stage is as follows:

 The SME has inbuilt further flexibility to each Sprint timetable. The Sprint duration is planned for 20 days,
but can expand to a maximum of 30 days. This timetable flexibility is an explicit risk management control.
It is specifically applied to the Sprint stage (as contrasted with the overall Scrum cycle) because the SME
considers the Sprint stage to be the most undefined, complex management component of the overall
software development process.

 The Sprint stage comprises the following XP practices: simple design, testing, refactoring, pair
programming, collective ownership, continuous integration, and coding standards. The following XP
practices have not been incorporated: planning game, forty hour week, short release cycles, and
metaphor. The XP practice on-site customer is not included in the Sprint stage. The customer is ‘on-site’
as a consultant with the development team during Scrum planning stage, the pre-Sprint stage, and the

www.ejise.com ©Academic Conferences Ltd 20

Peter Clutterbuck, Terry Rowlands and Owen Seamons

closure stage. The customer does not significantly co-locate with the development team at any stage
during the project.

Tailoring of the Scrum Sprint closure stage is as follows:

 The Customer Sign-off on Deliverable has been inbuilt into each Scrum Sprint closure stage. This sign-
off applies to unit deliverables, integrated deliverables, and ultimately, the final product deliverable.

The research assessment of the tailored Scrum/XP software development process is now presented. Table
5 shows the tailored Scrum process assessment. Table 6 shows the tailored XP process assessment. Table
7 shows the research assessment of those XP practices that are either partially implemented or not
implemented within the SME software development process. Each table is structured as follows:
Table 5: Research assessment of tailored Scrum processes

Stage/Practice
Overall Assessment

As outlined in Section 3, each interviewee (i.e. all project members,
including the customer) was requested to assess each Scrum/XP
stage/practice from the following set of ordinal labels: {strongly helpful,
helpful, improvable, difficult, not-workable}. The Overall Assessment
represents the modal value from this data set.

Efficiencies Interview transcripts with all project members were coded and analysed
using the Glaser-Strauss’ constant comparison method (Glaser, 1967) to
elicit the major themes (both positives and risks). Efficiencies describe the
major positives identified by the analysis.

Risks Interview transcripts with all project members were coded and analysed (as
outlined above in Efficiencies) facilitating the identification of the major risks
associated with a particular stage/practice.

Stage/Practice
Overall Assessment

 Efficiencies Risks

Scrum Planning

Strongly Helpful

Business Analysis (BA) and Customer
Designed Testing produce richer and
more accurate specifications, with
fewer subsequent changes, for
customer and developer.
BA facilitates a business process
redesign approach that more fully
captures (for the customer) the
potential efficiencies of proposed
software automation.
Builds stronger trust – at the earliest
stage - between customer and
developer.
Facilitates risk management from the
earliest stage.

Customer - project manager
disconnection: at social, cultural,
geographical or business levels.
Project manager deficiency: BA
technical competency, social and
management skills, software
development experience,
consultative decision making,
continuity for project duration.
Customer deficiency: business
process knowledge, level of
authority within business,
consultative decision making,
continuity for project duration.

Scrum pre-Sprint
Planning

Strongly Helpful

Alignment of overall project goal with
individual milestones.
Allows different methodologies for
various project estimations.
Facilitates risk management and
contingency planning within next Sprint
(based on the minimal 20 day Sprint
duration).
Customer Designed Features Testing
aligns business functionality with
software correctness – the right product
for customer.

Over-complex planning (e.g.
intricate task inter-dependencies)
Project personnel difficulties
(vacancies, recruitment of
experienced developers).
Customer deficiency: business
process knowledge, level of
authority within business,
continuity for project duration.
Overdesigned customer features.

Scrum Sprint Assessed in terms of individual XP practices (see Table 5)

Scrum Sprint Closure

Strongly Helpful

Confirms quality (i.e. business process
accuracy and technical integrity) of
each project component as completed.
Simplifies integration of the produced
components.
Better and timelier information for
customer.

Changed/changing (i.e. since
Sprint commencement) business
environment or business
processes within customer
organization.

www.ejise.com ISSN 1566-6379 21

Electronic Journal Information Systems Evaluation Volume 12 Issue 1 2009 (13-26)

Table 6: Research assessment of tailored XP practices
Stage/Practice
Overall Assessment

 Efficiencies Risks

Pair Programming

Improvable

Increased quality (lower defect
densities) and productivity (earlier
reaching of milestones).
Increased technical problem solving.
Simpler code design.
Greater adherence to programming
standards.
Increased morale within well matched
programming pairs.

Not productive for simple coding
tasks.
Non-compatible programming pairs
(on social level, problem-
solving/analytical level, experience
level).
Inappropriate work load allocation to
unevenly matched pairs.
Difficult to align with induction of new
project staff.

Continuous Testing /
Test Driven
Development

Strongly Helpful

Alignment of business functionality and
software quality – the right product
deliverable for the developer and
customer.
Timelier and more accurate design
specifications.
Fewer changes to design
specifications.

Customer’s business process
knowledge not aligned with project
module currently under design.
Difficult to establish the correct
number of tests.

Refactoring

Helpful

Reduced debugging time.
Simpler and cleaner software
architecture.

Time delay problematic.
Complicated by inadequate design
specifications.
Ineffective automation tools.
Incompatibility with some quality
control standards.

Simple Design

Improvable

Delivers necessary and sufficient end
product.

Can create an over-reliance on the
code being the documentation.
Difficult to establish a generalised
standard or protocol.

Collective Ownership

Improvable

Promotes team work – flatter (less
hierarchical) project team.
Greater knowledge of overall software
architecture.
Increased adherence to software
architecture standards.

Incompatibility with some quality
control standards.
Does not scale well in terms of
project team numbers.

Continuous
Integration

Improvable

Greater knowledge of overall project
architecture.
Increased capability for integrated
testing.
Increased flexibility in personnel
management of project team.

Does not scale well in terms of
project team numbers or project
size/complexity.
Complicated by complex, over-
engineered module interfaces.

Coding Standards

Very Helpful

Ensures readability of software
architecture.
Increased quality control automation.

Acclimatisation time for new project
members.

Table 7 below shows the ‘default’ XP practices that have been either not implemented or partially
implemented (on-site customer) within the SME software development process.

www.ejise.com ©Academic Conferences Ltd 22

Peter Clutterbuck, Terry Rowlands and Owen Seamons

Table 7: ‘Default’ XP practices that have been either not implemented or partially implemented.
Stage/Practice
Overall Assessment

Reasons for Non-Use

XP Planning Game

Not-workable

Considered to focus exclusively upon technical issues (code quality, etc)
and personnel issues (staff continuity, expertise, etc). Does not focus
adequately on business analysis and building trust between developer
and customer.

Small Releases

Not-workable

Very difficult to produce feature-rich, working software in short time
cycles.
Non-attractive cost/benefit analysis from customer perspective.

Forty hour week

Not-workable

Considered unworkable by all project members (including customer).
Over-regulation of staff, ‘blunt-instrument’ approach to personnel
management.

Metaphor
Not-workable

Concept lacks definition for practical application.
Considered too-simplistic and one-dimensional for achieving quality
outcome for customer and developer.

On-site customer
(full-time)

Not-workable

Non-attractive cost/benefit analysis from customer perspective.
Organisational and resourcing difficulties.
Emphasis on a significant trust link between project manager and
customer – not practical to establish same link between customer and all
development team members.
Partially implemented: customer/project manager dialogue during the
Scrum Planning, pre-Sprint, and closure stages.

The investigation of the overall development method effectiveness within this case study included a strong
focus upon quantifying the cost of requirements change that occurs within the development cycle up to (but
not post) product delivery. The cost of requirements change would be measured by developer effort – which
really is a proxy for person hours. That is, the research would measure, for each change to the project
design, the total number of person hours expended in implementing the change. In designing the case study
it was also noted that implementing change comprises multidimensional elements. The researches decided
to measure two of these elements:

Analysis effort The ‘thought’ effort that is expended in understanding the change and then
planning the integration of the change into the existing design.

Coding effort The effort that is expended in actually expressing the code with correct
syntax quality assured via successful unit testing.

The Research Methodology section described how protocol analysis – via a very simple protocol design –
was utilized to capture the required data for analysis. The protocol design provided for the developer
actioning the change to flag what activity (i.e. analysis OR coding) he/she was undertaking. Each recorded
session was then analysed and data collected.

Figure 3 shows the total cost of implementing the sixteen changes that were required during the project’s
development life (excluding the maintenance stage) – and the timing of these changes in relation to the five
Sprint stages comprising the overall project. Figure 3 also shows a typical cost of change curve that is
routinely associated with a plan-driven software development. The plan-driven cost of change curve was
initially reported by several US corporations in the 1970s. The initial findings reported a consistent 100:1
ratio between a post-implementation stage change cost and a requirements stage change cost. (Boehm,
1981) found that while the 100:1 figure was generally true for large software development projects, a 5:1
figure was more in tune with the cost of change in small projects (i.e. 2 to 5 KLOC or Thousand Lines Of
Code). More recently (McGibbon, 1996) reported a cost of change range from 70:1 up to 125:1. The plan
driven cost of change curve in Figure 3 uses a 5:1 figure.

www.ejise.com ISSN 1566-6379 23

Electronic Journal Information Systems Evaluation Volume 12 Issue 1 2009 (13-26)

Figure 3: Cost of change curve comparison (agile and plan driven)
As stated earlier in this paper, very little empirical data has been reported within the literature. Indeed
(Boehm, 2004) states: “Although Beck and others have provided anecdotal data on agile change
experiences...no empirical data was found for small, agile projects.” The anecdotal data within Boehm’s
quote refers to the agile cost of change curve presented in Figure 1 of this paper (Introduction).

The agile change of cost data described in Figure 3 initially appears quite impressive. It should be noted,
however, that the increase in effort from change 1 (4.8 man hours) to change 16 (7.7 man hours) represents
a compound increase of 2.9%.

Figure 4: Cost of coding effort and analysis effort
Figure 4 shows the effort costs (again expressed in person hours) for coding and analysis. The compound
increase rate for analysis is 2.1% (per change). The compound increase rate for coding is 1.9% (per
change). The development team was not surprised by these figures at the post-project review. The
development team view was that analysis (meaning the ‘thought’ that precedes code changes) would
consistently be the more time-consuming task.

5. Conclusions
The goals of this case study research were to describe how Scrum and XP practices had been tailored for
use within a SME software developer, and to assess the efficiencies and risks of this tailored use. The
research results describe those practices that have been ‘cherry-picked’ by the SME from the full spectrum
of Scrum/XP practices. This is consistent with what is reported in the literature as an emerging trend
(Fitzgerald, 2006) with respect to agile methodology usage. The research results also report the major
considerations of the SME project team and customer as to why specific practices have been selected in or

www.ejise.com ©Academic Conferences Ltd 24

Peter Clutterbuck, Terry Rowlands and Owen Seamons

out. These considerations confirm that business software development within the SME sector is a complex
mix of people, technology, and business processes that at best can be described in a highly abstracted
format. The results also reveal some interesting data trends in relation to the cost of requirements change
within the development cycle. Change does cost even when using agile methodologies. The designer of XP
stated in (Beck, 1999): “If a flattened cost curve makes XP possible, a steep change cost curve makes XP
impossible”. The results in this case study show that change did increase as a function of development cycle
time. Consequently change – and its cost – must be carefully risk managed during the project life. Agile
development methodologies within the SME business software process contribute many efficiencies – whilst
still leaving significant risks for control.

References
Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J. (2002) “Agile software development methods: Review and

Analysis”, [online] Technical Research Centre of Finland, VTT Publications 478,
http://www.inf.vtt.fi/pdf/publications/2002/P478.pdf.

Agile Alliance. (2001) “Manifesto for Agile Software Development”, [online], http://www.agilealliance.org.
Ambler, S. (2002) Agile Modeling: Effective Practices for Extreme Programming and the Unified Process, John Wiley &

Sons, New York.
Beck, K. (1999) Extreme Programming Explained, Addison-Wesley. Reading, MA.
Beck, K. (2000) Extreme Programming Explained: Embrace Change, Addison-Wesley, Reading, MA.
Benbasat, I., Goldstein, D., Mead, M. (1987) “The case research strategy in studies of information systems”. MIS

Quarterly, Vol 11, No. 3, pp 369-386.
Boehm, B. (1981) Software Engineering Economics, Prentice-Hall PTR.
Boehm, B., Turner, R. (2004) Balancing Agility and Discipline, Pearson Education, Inc.
Chrissis, M. B., Konrad, M., Shrum, S. (2006) CMMI: Guidelines for Process Integration and Product Improvement (2nd

Edition), Addison-Wesley.
Cockburn, A. (2000) Writing Effective Use Cases: The Crystal Collection for Software Professionals, Addison-Wesley,

Boston.
Cockburn, A. (2002) Agile Software Development, Addison-Wesley, Boston.
DSDM Consortium. (1997) Dynamic Systems Development Method, Version 3. DSDM Consortium, Ashford, England.
Ericsson, K. A. and Simon, H. A. (1993) Protocol Analysis Verbal Reports as Data, The MIT Press, Cambridge,

Massachusetts.
Fitzgerald, B., Hartnett, G., Conboy, K. (2006) Customising agile methods to software practices at Intel Shannon,

European Journal of Information Systems. Vol. 15. pp 200-213.
Fowler, M., Highsmith, J. (2001) “The agile manifesto”, Software Development. August.
Glaser, B.G., Strauss, A.L. (1967) The Discovery of grounded theory: strategies for qualitative research. Aldine

Publishing Company, Chicago.
Grisham, P. S., Perry, D. E., (2005) “Customer Relationships and Extreme Programming”, Human and Social Factors of

Software Engineering (HSSE). ACM, May, pp 1-6.
Highsmith, J. (1999) Adaptive Software Development, Dorset House Publishing, New York.
Highsmith, J. (2000) Adaptive Software Development: A Collaborative Approach to Managing Complex Systems, Dorset

House Publishing, New York.
Kitchenham, B., Pickard, L., Pfleeger, S.L. (1995) “Case studies for method and tool evaluation”, IEEE Software, Vol. 12,

pp 52-62.
Kruchten, P. (1999) The Rational Unified Process, 2nd Edition. Addison-Wesley, Reading, MA.
Layman, L., Williams, L., Cunningham, L. (2006) “Motivations and measurements in an agile case study”. Journal of

Systems Architecture (Elsevier), Vol. 52, pp 654-667.
Lee, G., Xia, W. (2005) “The ability of information systems development project teams to respond to business and

technology changes: a study of flexibility measures”, European Journal of Information Systems, Vol. 14, pp 75-92.
Lycett, M., Paul, R. (1999) “Information systems development: a perceptive on the challenge of evolutionary complexity”,

European Journal of Information Systems, Vol. 8, pp127-135.
McGibbon T (1996) Software Reliability Data Summary, Data Analysis Center for Software Technical Report.
Macias, F., Holcombe, M., Gheorghe, M. (2003) “A Formal Experiment Comparing Extreme Programming with

Traditional Software Construction”. Proceedings of the Fourth Mexican International Conference on Computer
Science (ENC 2003), September 8-12. IEEE, pp 73-80.

Marshall, C., Rossman, G. (1989) Designing Qualitative Research,. Sage Publications, California.
Mintzberg, H. (1979) The Structuring of Organisations, Prentice-Hall, Englewood Cliffs, NJ.
Palmer, S., Felsing, J. (2002) A Practical Guide to Feature-Driven Development, Prentice Hall, Upper Saddle River, NJ.
Patton, M.Q. (1990) Qualitative evaluation and research methods (2nd Edition), Sage Publications, CA.
Paulk, M. C. (1993) Capability Maturity Model for Software, Version 1.1, CMU/SEI-93-TR-24, ADA263403. Pittsburgh:

Software Engineering Institute, Carnegie-Mellon University.
Poole, C., Huisman, J.W. (2001) “Using Extreme Programming in a Maintenance Environment” IEEE Software, Vol. 18,

No. 6, Nov/Dec. pp 42-50.
Rumpe, B., Schroder, A. (2002) “Quantitative Survey on Extreme Programming Projects” Proceedings of the Third

International Conference on Extreme Programming and Flexible Processes in Software Engineering (XP2002), May
26-30, pp 95-100.

www.ejise.com ISSN 1566-6379 25

Electronic Journal Information Systems Evaluation Volume 12 Issue 1 2009 (13-26)

www.ejise.com ©Academic Conferences Ltd 26

Schwaber, K., (1995) “Scrum Development Process”, OOPSLA’95. Workshop on Business Object Design and
Implementation. Springer-Verlag.

Schwaber, K., Beedle, M. (2002) Agile Software Development with Scrum, Prentice-Hall, Upper Saddle River, NJ.
Stapleton, J. (1997) DSDM, Dynamic Systems Development Method: The Method in Practice, Addison-Wesley, Reading,

MA.
Travers, M. (2001) Qualitative Research through Case Studies, Sage Publications, London.
Walsham, G. (1995a). “The emergence of interpretivism in IS research”. Information Systems Research, Vol. 6, p376-

394.
Walsham, G. (1995b) “Interpretive case studies in research: nature and method”, European Journal of Information

Systems, Vol. 4, pp 74-81.
Wood, W., Kleb, W. (2003) “Exploring XP for Scientific Research”, IEEE Software, Vol. 20, No. 3, (May/June), pp 30-36.
Yin, R. (2003) Case Study Research: Design and Methods, Sage Publications, CA.
Zelkowitz, M.V., Wallace, D.R. (1998) “Experimental models for validating technology”, IEEE Computer, Vol. 31, pp 23-

31.

	1. Introduction
	2. Agile methods
	2.1 Agile methods overview
	2.2 Extreme programming (XP) and scrum

	3. Research methodology
	4. Research results
	4.1 Normalisation
	4.2 Tailoring and research assessment

	5. Conclusions
	References

