
ISSN 1566-6379 1 ©Academic Conferences Ltd
Reference this paper as:
van Solingen, R. and Berghout, E. “Causal Relationships between Improvements in Software Development Processes
and Final Software Product Quality.” The Electronic Journal Information Systems Evaluation Volume 11 Issue 1, pp. 1-
10, available online at www.ejise.com

Causal Relationships between Improvements in Software
Development Processes and Final Software Product Quality

Rini van Solingen1 and Egon Berghout2
1Department of Software Technology, Delft University of Technology, The Netherlands
2Centre for IT Economics Research, University of Groningen, The Netherlands
d.m.van.solingen@tudelft.nl
e.w.berghout@rug.nl

Abstract: A main assumption of software process improvement (SPI) is that improvements in a software development

process result in higher quality software products. In other words, SPI assumes the existence of causal relations
between process and product characteristics. To what extent have these causal relations, however, been explored?
Which specific process improvements have which particular impact on which particular product quality attributes?

In this paper an overview is given of these “software process and product dependencies” (PPD). This overview
comprises of a list of SPI-techniques and the associated product quality attributes that are addressed with these
techniques. The extent of the causality is investigated and whether there is a possibility to identify more or less effective
strategies for product quality improvement. The overview is based on a literature study and expert evaluation.

The research is summarised in a matrix of both software process elements and associated software product quality
characteristics. This matrix contains both satisfactory and unsatisfactory results. On the one hand, a promising extensive
base of publications on techniques and methods was identified. On the other, a disappointing deficiency of empirical
validation regarding the actual impact of those techniques on product quality is also prominent. As it is, we remain with
an inadequate and incomplete indication of the product characteristics that particular software process improvement
techniques intend to ameliorate. This article, therefore, hopefully, also provides a basis for discussion on the need to
make process-product dependencies more explicit.

Keywords: software development, software process improvement, learning, product-process dependencies, PPD.

1. Introduction

Software engineering is a relatively young discipline in which control over process, products and resources
appears to be difficult (Humphrey 1989). Time and cost overruns frequently occur, leading to all sorts of
product quality problems. These quality mishaps may cause dangerous situations in all kinds of areas. Well-
known examples are airplane accidents, space-project failures, and automobile malfunctions all due to
quality problems with software (Gibbs 1994; Glass 1998).

A number of „good software engineering practices‟ have been defined, which should result in a higher
probability of success (Humphrey 1989). These practices particularly refer to elements of the software
development process that need to be fulfilled. The underlying assumption here is, that in order to make a
high quality product, one requires to have a high quality development process. Consequently, the process
depends on the requirements of the product. Improvement of software processes with the aim to improve the
product, are grouped under the name „product focused SPI‟ (PROFES 1998; 1999).

In the recent years software engineering has a tendency to move towards standardization of models,
techniques and approaches. All models, techniques and approaches are packaged in state-of-the-art
practice methodologies to support and enhance the software engineering industry. The general notion is that
standardization and a methodological approach with structured steps and progress metrics will lead towards
improvement of software-products. In this paper an overview is presented of the relationships between these
best-practices and particular product quality characteristics. This overview should provide insight in which
improvement to the development process is more suitable to improve which quality characteristic of the
software product.

The overview is described according to the following steps:

1. Developing a process/product matrix. In this matrix the impact of actions in a development process and
on a software product is illustrated. The axis of the matrix are defined as well as the scale on which
impact can be measured (Section 3).

2. Surveying literature for process actions and identifying the impact of these actions on product quality
(Section 4). An expert panel supports this identification.

mailto:d.m.van.solingen@tudelft.nl
mailto:e.w.berghout@rug.nl

Electronic Journal Information Systems Evaluation Volume 11 Issue 1 2008 (41-50)

www.ejise.com ©Academic Conferences Ltd 2

3. Drawing conclusions from the matrix (Section 5).

The research was performed as part of the quality management initiative at Tokheim Industries and the EEC
PROFES project.

2. Defining a process-product relation matrix

In order to support decision making regarding process-product relations, there needs to be a kind of
representation that links these two dimensions (Hamann et al. 1998; Solingen 2000)

1
. Questions that should,

for example, be answered are:

 What actions can be taken to improve software usability?

 When a particular working method is improved, what are the consequences for, for instance,
maintainability?

 What alternative actions are there for unit testing that might have similar effects?

The information on the process side of the matrix indicates what (type of) process actions are available in the
software engineering domain. The information on the product side indicates which product quality
characteristics are influenced by one or more process actions. The cells express the extent of this influence.
The resulting matrix of process actions and quality characteristics will then indicate what the impact of a
certain process action will be on a certain quality characteristic or a set of quality characteristics, or indicate
what process actions are influencing a certain product quality characteristic.

The product life cycle has been used to define the process side of the matrix. This is, because techniques
can be applied in different phases of the development life cycle and may have different effects in different
phases. For example „reviews‟ have different effects depending on the life cycle phase: during requirements
their impact is primarily on improvement of the „functionality‟, while during „coding‟ their impact is primarily on
„reliability‟ and „maintainability‟.

After studying sources of available product life cycle definitions and available processes, the following life
cycle definition was used (based on: Bicego et al 1994; PROFES 1998; Pfleeger 1991):

 Product Requirements Specification

 Product Architecture Development

 Design & Implementation

 System Integration and Testing

 Product Maintenance

 Product Improvement

All process actions that were identified in the literature, were categorised in the above life cycle stages. The
detailed sub-phases of this life cycle model are listed in Appendix B.

The product side of the matrix is organised along a subdivision of software quality characteristics. Many
subdivisions have been published in the past (e.g. (Boehm 1978; McCall et al. 1977). In this research we
decided to select the ISO 9126 classification for software product quality (ISO/IEC 1994). The software
quality characteristics are illustrated in Figure 1. More detailed definitions of the quality characteristics and
sub-characteristics are listed in Appendix A.

1
 A working example of a repository of product-process dependencies can be found in the PROFES PPD

Repository (PROFES 1999).

Rini van Solingen and Egon Berghout

www.ejise.com ISSN 1566-6379 3

Reliability

Maturity

Fault Tolerance

Recoverability

Functionality

Suitability

Accuracy

Interoperability

Security

Compliance

Usability

Understandability

Learnability

Operability

Attractiveness

Maintainability

Analysability

Changeability

Stability

Testability

Portability

Adaptability

Installability

Co-existence

Conformance

Replaceability

Efficiency

Time Behaviour
Resource Utilisation

Figure 1: ISO 9126 software quality characteristics (ISO/IEC 1994).

A qualitative scale is used to express the extent of a process-product dependency, being:

+++ Highly positive impact, implying that the process action is expected to have a strong positive impact

on a particular product quality characteristic.

++ Medium positive impact, implying that the process action is expected to have a significant positive

impact on a particular product quality characteristic.

+ Low positive impact, implying that the process action is expected to have a modest impact on a

particular product quality characteristic.

0 No Impact, implying that there is no impact expected (not to be confused by “unknown”).

- Low negative impact, implying that the process action is expected to have a modest negative impact

on a particular product quality characteristic.

-- Medium negative impact, implying that the process action is expected to have a significant negative

impact on a particular a particular product quality characteristic.

--- High negative impact, implying that the process action is expected to have a strong negative impact

on a particular product quality characteristic.

For instance: n-version programming is expected to have a high positive impact on „reliability‟, a high
negative impact on „maintainability‟ and a medium negative impact on „efficiency‟.

3. Searching for literature on process-product relationships

A literature study is used to identify the various process-product relationships. The search for literature was
performed in several ways:

 Top-Down. In the top-down approach the software product life cycle model was used to find
process actions for each phase within the life cycle model. As the breakdown of the model
indicates, the life cycle model was broken down into activities for each phase. In this approach,
process actions were identified, which could be applied in the according phase for the
completion of some activity (as defined in the list of activities).

 Bottom-Up. In the bottom-up approach the software product quality model was used to find
process actions that contributed to, or had had an impact on, a certain quality characteristic. In
this approach, process actions were sought which could be applied throughout all phases of the
life cycle model.

 Middle-both-ways. In the Middle-both-ways approach a certain software engineering technique
or method, also known as process action, is selected to identify its impact on a certain set of
quality characteristics and its place in the life cycle. In this approach, process actions can be
selected from experience and the literature can give an indication of the impact of the process
action and the placement of the process action. This approach is most effective when the impact
of a certain process action needs to be identified without any prior references.

Studies of best-practices appeared to be most suitable. Although, the amount of research on software
engineering is, of course, enormous, it was surprising to us, that in only few publications the effectiveness of
new methods is validated (for instance, through case studies). It was even more surprising that so few
publications indicate to which specific quality characteristic a technique contributes. Most publications stated
that their approach „largely increased product quality‟, without indicating what this actually meant and how
significant this increase was. For the detailed outcomes of the literature survey we refer to (Soerjoesing

Electronic Journal Information Systems Evaluation Volume 11 Issue 1 2008 (41-50)

www.ejise.com ©Academic Conferences Ltd 4

1999). Notable publications were (Wichmann 1997; Peng & Wallace 1993; Vliet 2000; Gilb 1988; Lyu 1996;
Paul et al. 1993). In a publication by the Software engineering Institute (1997) several error detection
techniques are presented, including their impact on quality characteristics. This guide also includes a
preferred set of techniques to improve processes. Overall, more than 100 publications were reviewed to
complete the matrix of Appendix C.

Due to the absence on information about the detailed process-product dependencies in the existing
literature, we had to use an alternate approach to filling the PPD matrix: expert judgement. An expert panel
interpreted the publications with respect to the matrix of Appendix C. This expert panel consisted of two
business experts and one academic expert. On basis of their (embedded) software development
background, they assessed the information provided with the various techniques and scaled the expected
impact on a particular software product characteristic. This assessment was essential, because many of the
papers provided insufficient information for an unambiguous placement in the matrix.

The experts all had an extensive background in embedded software development, however, primarily in one
particular industry (Tokheim Industries). Consequently, this could cause a bias in the matrix making the
results to some extent industry specific. We would like to challenge other organizations to validate the matrix
in their organization and report on their experiences. It is not our intention to post the PPD matrix as the
industry-wide externally valid model for product-process dependencies. The model is intended as a more
detailed approach for particular companies to assess product quality by addressing specific process aspects.
Usage of this PPD matrix in one specific organization for product quality estimation (based on the process
model and project plan) is described in (Solingen 2000).

The PPD matrix of Appendix C contains 467 PPD‟s. From these PPD‟s, 424 PPD‟s have a positive effect and
43 a negative effect. All product characteristics are addressed by process actions. The smallest number is 3
(for instance, Functionality-Compliance). The largest number is 69 (Maintainability-Analysability). The
following number of improvement actions refers to the following software product characteristics:

 Functionality: 103;

 Reliability: 85;

 Usability: 63;

 Efficiency: 51;

 Maintainability: 142;

 Portability: 23.

This implies that suggestions for improving particular software product characteristics can derived from the
PPD matrix for every software product characteristic. Furthermore, possible additional effects of particular
improvement actions can be derived from the matrix, These additional effects may, of course, be welcome or
undesired.

As such, the PPD matrix turned out to be an excellent check list for improvement actions and an effective
way to communicate the effects of software process improvements among the involved engineers.

4. Conclusions

In this paper an overview is provided of process improvement actions and their most likely effect on specific
software product quality attributes. This overview is summarised in the matrix of Appendix C. This matrix
should enable researchers and practitioners to identify more (and less) effective strategies for software
process improvement on basis of particular product quality weaknesses. The relationships are based on an
extensive literature review and assessed by an expert panel.

The matrix can be used as a checklist, however it should also be usable as a kind of knowledge base. In this
case, the software engineers of an organization complete the various relations in the matrix on the basis of
new experiences.

The proposed framework is also suitable for the validation of new techniques. Researchers that propose new
techniques are encouraged to find practical evidence that their approach actually affects particular process
and product relationships. We consider the identified disappointing empirical evidence of existing methods
and techniques as a major improvement action for software engineering researchers.

Rini van Solingen and Egon Berghout

www.ejise.com ISSN 1566-6379 5

Acknowledgements

The authors would like to thank Shyam Soerjoesing and all members of the PROFES consortium for their
contribution to the work and concepts presented in this paper.

References

Bicego, S., Koch, P., Kuvaja, A., Krzanik, A., Mila, L., Saukkonen, G. (1994) “Software Process Assessment and
Improvement: The BOOTSTRAP Approach”, Blackwell Publishers.

Boehm, B.W., Brown, J.R. Kaspar, H., Lipow, M., McLeod, G., Merritt, M. (1978) “Characteristics of Software Quality”,
North Holland.

Curtis, B., Chrissis, M.B., Paulk, M.C., Weber, C.V. (1993) “Key practices of the Capability Maturity Model”, Software
Engineering Institute, Version 1.1. SEI-CMU-93-TR-25

Gibbs, W.W. (1994) “Trends in Computing: Software’s Chronic Crisis”, Scientific American, Vol. September, pp.86-100.
Gilb, T. (1988) “Principles of software engineering management”, Addison Wesley.
Glass, R.L. (1998) “Software Runaways”, Pearson Education POD.
Hamann, D., Järvinen, J., Oivo, M., Pfahl, D., (1998) “Experience with explicit modelling of relationships between process

and product quality”, Proceedings of the 4th European Software Process Improvement Conference, Monte Carlo, Vol
. December.

Humphrey, W.S. (1989) “Managing the Software Process”, Addison-Wesley.
ISO/IEC, (1994) Information Technology -Software quality characteristics and metrics- “Quality characteristics and

subcharacteristics”, part 1.
Lyu, M.R. (1996) “Software Reliability Engineering”, IEEE CS Press, McGraw-Hill.
McCall, J.A., Richards, P. K., Walters, G. F. (1977) “Factors in Software Quality”, National Tech. Information Service,

Springfield, AD/A-049-014/015/055, Vol. 1,2 and 3
Peng, W.W., Wallace, D.R. (1993) “Software Error Analysis”, National Institute of Standards and Technology,

Gaithersburg, NIST Special Publication, March, pp 500-209.
Pfleeger, S.F. (1991) “Software Engineering: the production of quality software”, McMillan Publishing, New York.
PROFES PPD (1999) Repository [online]: http://www.vtt.com/, PROFES Consortium.
PROFES User Manual (1998) [online]: http:/www.vtt.com/, PROFES Consortium.
Soerjoesing, S P. (1999) “Software quality improvement through product-process dependency modelling”, Tokheim

Report, Bladel. An electronic version of this report can be received on request to the authors.
Software engineering Institute (1997) “C4 Software Technology Reference Guide-A Prototype”, Carnegie Mellon

University, Pittsburgh, CMU/SEI-97-HB-001, January.
Solingen, R van (2000) “Product focused software process improvement: SPI in the embedded software domain”, BETA

Research Institute, Eindhoven.
Vliet, J.C. (2000) “Software Engineering”, Principles and Practice 2

nd
 Edition, Wiley.

Wichmann, B.A. (1997) Measurement Good Practice Guide No.5, Information Systems Engineering National Physical
Laboratory, National Physical Laboratory, Middlesex, November.

http://www.vtt.com/
http://mango2.vtt.fi:84/ele/profes/PUMv10.pdf

Electronic Journal Information Systems Evaluation Volume 11 Issue 1 2008 (41-50)

www.ejise.com ©Academic Conferences Ltd 6

Appendix A: ISO 9126 quality characteristics

Functionality The capability of the software to provide functions which meet stated and implied needs when the
software is used under specified conditions

Suitability The capability of the software to provide an appropriate set of functions for specified tasks and user
objectives

Accuracy The capability of the software to provide the right or agreed results or effects

Interoperability The capability of the software to interact with one or more specified systems

Compliance Attributes of software that make the software adhere to application related standards or conventions
or regulations in laws and similar prescriptions.

Security The capability of the software to prevent unintended access and resist deliberate attacks intended
to gain unauthorised access to confidential information, or to make unauthorised modifications to
information or to the program so as to provide the attacker with some advantage or so as to deny
service to legitimate users

Reliability The capability of the software to maintain the level of performance of the system when used under
specified conditions

Maturity The capability of the software to avoid failure as a result of faults in the software

Fault-tolerance The capability of the software to maintain a specified level of performance in cases of software
faults or of infringement of its specified interface

Recoverability The capability of the software to re-establish its level of performance and recover the data directly
affected in the case of a failure

Usability The capability of the software to be understood, learned, used and liked by the user, when used
under specified conditions

Understandability The capability of the software product to enable the user to understand whether the software is
suitable, and how it can be used for particular tasks and conditions of use

Learnability The capability of the software product to enable the user to learn its application

Operability The capability of the software product to enable the user to operate and control it

Attractiveness The capability of the software product to be liked by the user

Efficiency The capability of the software to provide the required performance, relative to the amount of
resources used, under stated conditions

Time behaviour The capability of the software to provide appropriate response and processing times and throughput
rates when performing its function, under stated conditions

Resource
Utilisation

The capability of the software to use appropriate resources in an appropriate time when the
software performs its function under stated conditions

Maintainability The capability of the software to be modified

Analysability The capability of the software product to be diagnosed for deficiencies or causes of failures in the
software, or for the parts to be modified to be identified

Changeability The capability of the software product to enable a specified modification to be implemented

Stability The capability of the software to minimise unexpected effects from modifications of the software

Testability The capability of the software product to enable modified software to be validated

Portability The capability of software to be transferred from one environment to another

Adaptability The capability of the software to be modified for different specified environments without applying
actions or means other than those provided for this purpose for the software considered

Installability The capability of the software to be installed in a specified environment.

Conformance Attributes of software that make the software adhere to standards or conventions relating to
portability.

Co-existence The capability of the software to co-exist with other independent software in a common environment
sharing common resources

Replaceability The capability of the software to be used in place of other specified software in the environment of
that software

Rini van Solingen and Egon Berghout

www.ejise.com ISSN 1566-6379 7

Appendix B: List of life cycle phases for process dimension

1 Product requirement specification
1.1 Product requirement definition
1.1.1 Requirements gathering
1.1.2 Requirements definition
1.1.3 Requirements review
1.2 Feasibility study
1.2.1 Requirements analysis
1.2.2 Architecture specification
1.2.3 Project plan
1.2.4 Risk analysis
1.2.5 Technologies evaluation
1.2.6 Available designs evaluation
1.2.7 Product test plan Preparation
1.3 Application requirement specification
1.3.1 Product requirement analysis
1.3.2 Feasibility analysis
1.3.3 Application requirements specification
2 Product design
2.1 Functional design
2.1.1 Detailed product function design
2.1.2 Behaviour function analysis
2.1.3 Function structuring
2.1.4 Funct. product component mapping
2.1.5 User manual (functional) prototype
2.2 Architectural design
2.2.1 Detailed product architecture design
2.2.2 Design review
2.2.3 Technical product documentation
3 System design and implementation
3.1 Mechanical design and implementation
3.1.1 Mechanical design
3.1.2 Mechanical documentation
3.1.3 Mechanical design review
3.1.4 Mechanical component implementation
3.1.5 Testing of the mechanical components
3.2 Electronics design and implementation
3.2.1 Electronics design
3.2.2 Electronics documentation
3.2.3 Electronics design review
3.2.4 Electronic component implementation
3.2.5 Testing of the electronic components
3.3 Software design and implementation
3.3.1 Software design
3.3.2 Software documentation
3.3.3 Software design review
3.3.4 Software component implementation
3.3.5 Testing of the software components
4 System integration and testing
4.1 Product construction
4.1.1 Product components integration
4.1.2 Integration testing
4.1.3 Product documentation
4.1.4 Prototype building
4.2 Product validation
4.2.1 Unit testing
4.2.2 Prototype review
5 Production and Maintenance:

5.1 Pilot series production
5.2 Pilot series audit
5.3 Product installation
5.4 Product maintenance
5.5 Customer training
5.6 Customer support
6 Product Improvement:
6.1 Maintain product design
6.2 Defect reporting/tracking
6.3 Collecting Feedback
6.4 Monitor product quality
6.5 Product improvement area identification
6.6 Product follow up planning
6.7 Product improvement increment

Electronic Journal Information Systems Evaluation Volume 11 Issue 1 2008

www.ejise.com ©Academic Conferences Ltd 50

Appendix C: Product and process dependencies matrix [7]

Author Name

www.ejise.com ISSN 1566-6379 51

Electronic Journal Information Systems Evaluation Volume 11 Issue 1 2008

www.ejise.com ©Academic Conferences Ltd 52

